
© 2020 Renesas Electronics Corporation. All rights reserved.

EMBEDDED SYSTEMS
BASED ON CORTEX-M4 AND THE RENESAS
SYNERGY PLATFORM

2020
PROF. DOUGLAS RENAUX, PHD
PROF. ROBSON LINHARES, DR.
UTFPR / ESYSTECH

RENESAS ELECTRONICS CORPORATION

© 2020 Renesas Electronics Corporation. All rights reserved. 500

 LAB3 – ASSEMBLY PROGRAMMING AND ATPCS
Objectives:

▪ Develop an assembly routine that is callable from a C program. The assembly routine must follow the ATPCS standard.

▪ The function to be implemented in assembly generates the histogram of an 8-bit grayscale image.

© 2020 Renesas Electronics Corporation. All rights reserved. 501

 LAB3 – ASSEMBLY PROGRAMMING AND ATPCS
Learning Objectives:

▪ Apply the embedded software development process presented in Lab 2

▪ Define the interface between the C program (caller) and the Assembly function (callee)

▪ Plan the data structures to be used

▪ Devise an algorithm to generate a histogram

▪ Implement, Test, Debug

© 2020 Renesas Electronics Corporation. All rights reserved. 502

 LAB3 – ASSEMBLY PROGRAMMING AND ATPCS
Activities:

1. Understanding the Problem Domain

2. Problem definition

3. Designing the Data Structures

4. Parameter passing and return of the result

5. Algorithm

6. Implementation

7. Test cases

© 2020 Renesas Electronics Corporation. All rights reserved. 503

 LAB3 – ACTIVITY 1
Activity 1 – Understanding the Problem Domain

▪ A raster image or bitmap is composed of dots, or pixels, lay out as a matrix. On a grayscale image, each pixel is

represented by a number indicating the level of lighting of that pixel.

▪ On an 8-bit grayscale image, each pixel is represented by an 8-bit value. Hence, there are 256 levels of gray, ranging

from 0 (black) to 255 (white).

▪ Shown below is a 3 x 3 8-bit grayscale image (9 pixels in total)

and the corresponding 9-pixel image.

 0 16 32
 64 96 128
160 224 255

© 2020 Renesas Electronics Corporation. All rights reserved. 504

 LAB3 – ACTIVITY 1
Activity 1 – Understanding the Problem Domain

A histogram is a graphical representation of the tonal distribution of an image. On the horizontal axis there are the possible

values that a pixel can have (0-255 in this example) and the vertical axis presents the quantities of pixels with a given

luminosity level.

An image with N pixels were half of them are white and half of them are black would have a histogram like this:

Histograms are very useful in digital image processing, to determine

thresholds, to adjust brightness and contrast, to identify problems,

and many more.

To construct a histogram, all pixels of an image have to be processed,

hence, it is desirable to have efficient algorithms and implementations

for better performance.

N/2

pixel
count

pixel
value

0 128 255

© 2020 Renesas Electronics Corporation. All rights reserved. 505

 LAB3 – ACTIVITY 2
Activity 2 – Problem Definition 1/2

Develop a function, to be implemented in assembly, that constructs the histogram of an

8-bit grayscale bitmap image.

Input parameters:

▪ Image width - number of pixels across the image.
▪ Image height - height of image in pixels
▪ Starting address - address of the first pixel in memory. Each pixel occupies one byte. The image is represented by a

matrix were image[0][0] is the upper left pixel of the image. The matrix is stored by rows, hence, the next address holds
image[0][1] (next pixel on the upper row).

▪ Histogram - address of a 256-position vector holding 16-bit unsigned integers that hold the pixel counts. The histogram
has invalid data when the function is called.

Output: 16-bit unsigned integer indicating the total number of pixels processed.

© 2020 Renesas Electronics Corporation. All rights reserved. 506

 LAB3 – ACTIVITY 2
Activity 2 – Problem Definition 2/2

Restrictions:

The total number of pixels in the image (i.e. width x height) must be less than 64K (65,536)

Error codes:

Function returns 0 to indicate an error (e.g. image too large)

Function prototype

uint16_t EightBitHistogram(uint16_t width, uint16_t height, uint8_t * p_image, uint16_t *

p_histogram);

© 2020 Renesas Electronics Corporation. All rights reserved. 507

 LAB3 – ACTIVITY 3
Activity 3 – Designing the Data Structures

The two important data structures for this problem are the matrix that holds the bitmap and the vector that stores the

histogram.

The bitmap matrix has its number of columns equal to the width of the image and its number of rows equal to the height of

the image. Each element stored in the matrix is an 8-bit unsigned integer (uint8_t) that represents the gray level of the

corresponding pixel, 0 being black and 255 being white.

The histogram vector has size 256, hence, its

indexes run from 0 to 255. The ith element of the

vector stores the count of pixels at value i.

histogram[i] = number of pixels whose value is i.

Hence, adding up all elements of the vector must

result in a number equal to width x height.

For a 2-pixel high by 3-pixel wide
image the matrix would be:
uint8_t bitmap[2][3] = {
 {64,96,128},
 {160,224,255}};

© 2020 Renesas Electronics Corporation. All rights reserved. 508

 LAB3 – ACTIVITY 4
Activity 4 – Parameter passing and return of the result

Considering that the function prototype is:
uint16_t EightBitHistogram(uint16_t width, uint16_t height, uint16_t * p_image, uint8_t *

p_histogram);

By ATPCS the parameters are in registers R0 to R3:

width - in R0 (upper half of R0 is 0)

height - in R1 (upper half of R1 is 0)

p_image - in R2

p_histogram - in R3

The result is passed by R0 (upper half is 0)

© 2020 Renesas Electronics Corporation. All rights reserved. 509

 LAB3 – ACTIVITY 5
Activity 5 – Algorithm

One possible solution design is presented here using the

UML 2.5 Activity diagram notation.

If the implementation requires registers other than R0..R3

and R12 then there is the need to push these registers at

the start and restore them at the end.

Note that the histogram is constructed in a very efficient

way by simply using the value of each pixel as an index

to the position in the histogram that must be incremented.

image_size = width * height

image_size
 ≥ 64K

return 0

 // clear histogram
 for i = 0..255
 histogram[i] = 0;

// calculate histogram
for i = 0 .. image_size-1
 ++histogram[image[i]];

return
image_size

© 2020 Renesas Electronics Corporation. All rights reserved. 510

 LAB3 – ACTIVITY 6
Activity 6 – Implementation

A possible organization of the source files is:

▪ hal_entry.c this is the C program that calls the assembly function

 hal_entry is executed after initialization;

 it calls EightBitHistogram

 then presents the results on the virtual console.

▪ histogram.asm this is the assembly source file where

 EightBitHistogram is defined.

▪ images.c holds the matrices with the test images.

Tips on how to use the Renesas Virtual Console are in slide: LAB 5 - Activity 3

© 2020 Renesas Electronics Corporation. All rights reserved. 511

 LAB3 – ACTIVITY 6
Activity 6 – Implementation

The assembly source file requires
assembler directives at the start, as
shown here.

© 2020 Renesas Electronics Corporation. All rights reserved. 512

 LAB3 – ACTIVITY 7
Activity 7 – Test Cases

Two test cases are provided. The first is matrix image0 that has only

3 lines and 4 columns. Such a small test case is important to debug

the implementation on a step-by-step execution.

Shown here is the contents of image0 and the corresponding

histogram.

#define WIDTH0 4
#define HEIGTH0 3
const uint8_t image0[HEIGTH0][WIDTH0] = {
 { 20, 16, 16, 18},
 {255, 255, 0, 0},
 { 32, 32, 32, 32}
};

© 2020 Renesas Electronics Corporation. All rights reserved. 513

 LAB3 – ACTIVITY 7
Activity 7 – Test Cases

The second test case is the test image presented here. Its pixels are

encoded in the matrix image1. Its size is 160 x 120 pixels.

The corresponding histogram is presented below:

© 2020 Renesas Electronics Corporation. All rights reserved.

Renesas.com

