
© 2020 Renesas Electronics Corporation. All rights reserved.

EMBEDDED SYSTEMS
BASED ON CORTEX-M4 AND THE RENESAS
SYNERGY PLATFORM

2020
PROF. DOUGLAS RENAUX, PHD
PROF. ROBSON LINHARES, DR.
UTFPR / ESYSTECH

RENESAS ELECTRONICS CORPORATION

© 2020 Renesas Electronics Corporation. All rights reserved. 305

9 – CAN
▪ Introduction

▪ Block Diagram

▪ Registers

▪ SW Stack

© 2020 Renesas Electronics Corporation. All rights reserved. 306

9.1 – INTRODUCTION
CAN is an acronym for Controller Area Network. It is defined by the ISO-11808: 2003 standard and has been mainly

motivated by the needs of the automotive industry, such as the ever increasing use of embedded sensors into the vehicles

and the need to optimize the internal space and reduce costs with cabling.

Characteristics of CAN:

▪ Two-wire multi-master serial bus

▪ Message-based protocol

▪ Contention resolution via decentralized arbitration

▪ All messages are broadcast and processed by the nodes only if needed

▪ Speeds up to 1 Mbps

© 2020 Renesas Electronics Corporation. All rights reserved. 307

CAN TOPOLOGY
CAN nodes are interconnected in a bus topology.

CAN physical layer is implemented with two wires (CANH and CANL).

A logical 0 (called “dominant”) is obtained when CANH is approx. 3.5V and
CANL is approx. 1.5V.

A logical 1 (called “recessive”) is obtained when both CANH and CANL are
at approx. 2.5V.

Node Node

Node Node Node

Bus

CANL

CANH

RL RL

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. 308

CAN BUS FRAME
The standard CAN frame is defined as follows:

▪ Arbitration field (Identifier) defines the message identifier and its priority;

▪ Data data to be transmitted (0 to 64 bits);

▪ SOF, CRC, ACK and End of Frame error checking and synchronization;

▪ IFS (Interframe Space) idle time used to process buffers.

Source: CAN Bus (https://en.wikipedia.org/wiki/CAN_bus)

© 2020 Renesas Electronics Corporation. All rights reserved. 309

CAN BUS FRAME (CONT.)
Control define the following sub-fields:

▪ Data length (0 to 8 bytes),

▪ Requ. Request (RTR) used to identify a Remote Frame see following slides,

▪ ID Ext. (IDE) used to identify a Standard or Extended Frame:

▪ Standard Frame IDE is dominant “0”, 11-bit identifier as shown in picture,

▪ Extended Frame IDE is recessive “1”, 29-bit identifier. The remaining 18 bits of the identifier are placed right after the

IDE bit, followed by an extra RTR bit. The original RTR is called SRR (Substitute Remote Request) and acts as a

placeholder.

© 2020 Renesas Electronics Corporation. All rights reserved. 310

CAN MESSAGE TYPES
▪ Data Frame carries data sent by a Node:

▪ The RTR bit is dominant “0” to identify a Data Frame;

▪ It is always preceded by an Interframe Space.

▪ Remote Frame carries a request for a transmission of data from another Node:

▪ The Arbitration/Identifier field carries the Identifier of the requested Node;

▪ The RTR bit is recessive “1” to identify a Remote Frame;

▪ The Data field is empty and the Data Length part of Control field determines the length of the requested message;

▪ It is always preceded by an Interframe Space.

© 2020 Renesas Electronics Corporation. All rights reserved. 311

CAN MESSAGE TYPES
▪ Error frame special format used to signal an error;

▪ Not preceded by an Interframe Space.

▪ Overload frame special format used to provide an extra delay between messages (receiver too busy);

▪ Not preceded by an Interframe Space.

© 2020 Renesas Electronics Corporation. All rights reserved. 312

CAN ARBITRATION PROCESS
▪ Every message has a priority level corresponding to its identifier (arbitration field) the lower the value, the higher the

priority.

▪ When two or more nodes try to transmit at the same frame time:

▪ Identifier bits 0 are “dominant” over identifier bits 1 “recessive”;

▪ The node that sends a 1 and reads back a 0 stops transmitting on that frame retries on the next frame;

▪ The node that sends a 0 and reads back a 0 retains control and goes on to send the next identifier bit;

▪ After all the identifier bits are tested, the node that keeps on retaining control (i. e. the node whose message identifier

has the highest priority) sends the message contents.

© 2020 Renesas Electronics Corporation. All rights reserved. 313

9.2 – BLOCK DIAGRAM
Implementation for the CAN Module of the S7G2 MCU.

Message reception and transmission organized in

mailboxes configurable as single or FIFOs for

different types of messages.

Source: Renesas Synergy MCUs User’s Manual: Hardware

© 2020 Renesas Electronics Corporation. All rights reserved. 314

9.3 – REGISTERS – CASE STUDY
Implementation for the CAN Module of the R7FS7G27H3A01CFC Renesas ARM Cortex-M4 MCU:

▪ CTLR mailbox mode, bus operation and/or reset, timestamp configuration;

▪ BCR data transfer rate configuration;

▪ MKR[0…7] � define masks for reception of specific messages (IDs) into specific mailboxes (depending on MKR index);

▪ FIDCR[0..1] similar to MKR but for FIFO mailboxes;

▪ MKIVLR enables or disables masking (via MKR) for message acceptance;

▪ MIER enable/disable mailbox interrupts;

▪ MCTL_TX[0..31] transmission control for each mailbox;

▪ MCTL_RX[0..31] reception control for each mailbox;

© 2020 Renesas Electronics Corporation. All rights reserved. 315

9.3 – REGISTERS – CASE STUDY
▪ MB[0..31] register groups for each mailbox:

▪ MB[0..31].ID received or transmitted message identifiers;

▪ MB[0..31].DL data length;

▪ MB[0..31].D[0..7] received or transmitted data;

▪ MB[0..31].TS timestamp for received messages.

▪ RFCR, TFCR receive and transmit FIFO control;

▪ RFPCR, TFPCR increment of the CPU-controlled pointer for receive and transmit FIFOs;

▪ STR global CAN status register (new data received, receive and transmit FIFO status, CAN mode status and error

status);

▪ EIER enable / disable error interrupts;

▪ EIFR status of error detection.

© 2020 Renesas Electronics Corporation. All rights reserved. 316

9.3 – REGISTERS – CASE STUDY
▪ RECR, TECR receive / transmit error count;

▪ ECSR status of CAN bus errors;

▪ TSR stores the timestamp;

▪ TCR test control.

© 2020 Renesas Electronics Corporation. All rights reserved. 317

9.4 – SOFTWARE STACK – CASE STUDY
Example of CAN stack for Renesas Synergy microcontroller hardware.

(https://www.renesas.com/en-us/software/D6001427.html)

Source: Renesas Synergy CAN HAL Driver Module Guide
r11an0065eu0101-synergy-can-hal-mod-guide

https://www.renesas.com/en-us/doc/products/renesas-synergy/apn/r11an0065eu0101-synergy-can-hal-mod-guide.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. 318

9.4 – SOFTWARE STACK – CASE STUDY
Example of CAN API for Renesas Synergy microcontroller hardware

Source: Renesas Synergy CAN HAL
Driver Module Guide
r11an0065eu0101-synergy-can-hal-
mod-guide

Basic API
functions

https://www.renesas.com/us/en/doc/products/renesas-synergy/apn/r11an0065eu0101-synergy-can-hal-mod-guide.pdf
https://www.renesas.com/us/en/doc/products/renesas-synergy/apn/r11an0065eu0101-synergy-can-hal-mod-guide.pdf

© 2020 Renesas Electronics Corporation. All rights reserved.

Renesas.com

