

1. Conformal mapping: linear function.

- (a) Let $f(z) = az + b$ with $a \neq 0$. Show that f is analytic on \mathbb{C} and that $f'(z) \neq 0$ for all $z \in \mathbb{C}$. Conclude that f is conformal at every point of \mathbb{C} .
- (b) Describe the geometric effect of $f(z) = 2e^{j\pi/4}z + 1$ on lines and circles in the complex plane. In particular, determine the images of the line $\text{Im } z = 1$ and of the circle $|z - 1| = 2$.

2. Cauchy integral formula I. Let $f(z) = \frac{z^2 + 1}{z - 2}$ and let Γ be the positively oriented circle $|z| = 3$.

- (a) Locate all singularities of f and state which of them lie inside Γ .
- (b) Compute $\int_{\Gamma} \frac{f(z)}{z - 1} dz$ using Cauchy's integral formula.
- (c) Evaluate $\int_{\Gamma} \frac{z^2 + 1}{(z - 1)(z - 2)} dz$ and explain the relation with part (b).

3. Convergence and properties of power series. Let $\sum_{n=0}^{\infty} a_n(z - 2)^n$ be a power series that converges at $z = 5$.

- (a) Show that the radius of convergence R satisfies $R \geq 3$.
- (b) Prove that the series converges uniformly on any closed disk $|z - 2| \leq r < R$.
- (c) Let $f(z) = \sum_{n=0}^{\infty} a_n(z - 1)^n$ with radius of convergence $R > 0$. Show that f is analytic on $|z - 1| < R$ and that

$$f'(z) = \sum_{n=1}^{\infty} n a_n (z - 1)^{n-1}$$

has the same radius of convergence R .

4. Taylor series: computation and application.

- (a) Find the Taylor series of $f(z) = \frac{1}{1 - z}$ about $z_0 = 0$ and state its radius of convergence.
- (b) Using part (a), obtain the Taylor series about $z_0 = 0$ for $g(z) = \frac{1}{(1 - z)^2}$ by differentiating term by term and give its radius of convergence.
- (c) Use the series for $g(z)$ to compute

$$\int_0^{1/2} \frac{dx}{(1 - x)^2}$$

by integrating the corresponding real series term by term and summing it.

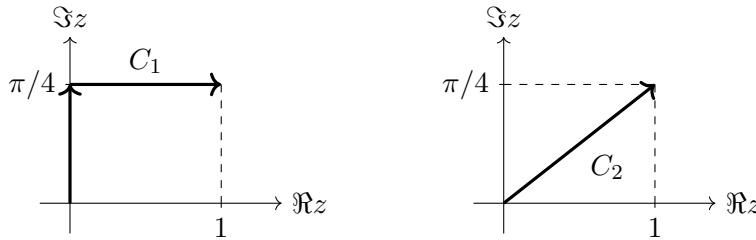


Figure 1: Contours C_1 and C_2 for the following problem.

5. Converting to real integrals: paths C_1 and C_2 . Let $f(z) = e^{2z}$. By converting to real integrals, evaluate $\int_{C_1} f(z) dz$ and $\int_{C_2} f(z) dz$, where the contours C_1 and C_2 are shown in the figure:

- C_1 : from 0 vertically to $j\pi/4$, then horizontally to $1 + j\pi/4$,
- C_2 : the straight line segment from 0 to $1 + j\pi/4$.