## Principles of Electric Circuits: <br> Conventional Current

Tenth Edition, Global Edition


## Chapter 9

Branch, Loop, and Node
Analyses

P Pearson

## Summary: Simultaneous Equations (2 of 2)

Example:
A circuit has the following equations. Set up the equations in standard form.

$$
\begin{aligned}
& -10+270 I_{\mathrm{A}}+1000\left(I_{\mathrm{A}}-I_{\mathrm{B}}\right)=0 \\
& 1000\left(I_{\mathrm{B}}-I_{\mathrm{A}}\right)+680 I_{\mathrm{B}}+6=0
\end{aligned}
$$

Solution:
Rearrange so that variables and their coefficients are in order and put constants on the right.

$$
\begin{aligned}
1270 I_{\mathrm{A}}-1000 I_{\mathrm{B}} & =10 \\
-1000 I_{\mathrm{A}}+1680 I_{\mathrm{B}} & =-6
\end{aligned}
$$

P Pearson

## Summary: Simultaneous Equations (1 of 2)

Circuit analysis methods in Chapter 9 require use of simultaneous equations.

To simplify solving simultaneous equations, they are usually set up in standard form. Standard form for two equations with two unknowns is


## Summary: Solving Simultaneous Equations (1 of 10)

Three methods for solving simultaneous equations are

- Algebraic substitution
- The determinant method
- Using a calculator

P Pearson

Summary: Solving Simultaneous Equations (2 of 10)
Example:
Solve for $I_{A}$ using substitution.

$$
\begin{gathered}
1270 I_{\mathrm{A}}-1000 I_{\mathrm{B}}=10 \\
-1000 I_{\mathrm{A}}+1680 I_{\mathrm{B}}=-6
\end{gathered}
$$

Solution:
Solve for $I_{B}$ in the first equation:

$$
I_{\mathrm{B}}=1.270 I_{\mathrm{A}}-0.010
$$

Substitute for $I_{B}$ into the second equation:

$$
-1000 I_{\mathrm{A}}+1680\left(1.270 I_{\mathrm{A}}-0.010\right)=-6
$$

Rearrange and solve for $I_{A}$.

$$
\begin{aligned}
& 1134 I_{\mathrm{A}}=10.8 \\
& I_{\mathrm{A}}=9.53 \mathrm{~mA}
\end{aligned}
$$

Copyright © 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved

## Summary: Solving Simultaneous Equations (4 of 10)

The method of determinants is another approach to finding the unknowns. The characteristic determinant is formed from the coefficients of the unknowns.
Example:
Write the characteristic determinant for the equations.
Calculate its value.

$$
\begin{aligned}
1270 I_{\mathrm{A}}-1000 I_{\mathrm{B}} & =10 \\
-1000 I_{\mathrm{A}}+1680 I_{\mathrm{B}} & =-6
\end{aligned}
$$

## Solution:

$$
\left|\begin{array}{cc}
1270 & -1000 \\
-1000 & 1680
\end{array}\right|=1.134
$$

P Pearson

## Summary: Solving Simultaneous Equations (3 of 10)

If you wanted to find $I_{B}$ in the previous example, you can substitute the result of $I_{A}$ back into one of the original equations and solve for $I_{B}$. Thus,

$$
\begin{aligned}
& 1270 I_{\mathrm{A}}-1000 I_{\mathrm{B}}=10 \\
& 1270(9.53 \mathrm{~mA})-1000 I_{\mathrm{B}}=10 \\
& I_{\mathrm{B}}=2.10 \mathrm{~mA}
\end{aligned}
$$

Copyright © 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved

## Summary: Solving Simultaneous Equations (5 of 10)

To solve for an unknown by determinants, form the determinant for a variable by substituting the constants for the coefficients of the unknown. Divide by the characteristic determinant.


## Summary: Solving Simultaneous Equations (6 of 10)

Example:
Solve the same equations using determinants:

$$
\begin{aligned}
1270 I_{\mathrm{A}}-1000 I_{\mathrm{B}} & =10 \\
-1000 I_{\mathrm{A}}+1680 I_{\mathrm{B}} & =-6
\end{aligned}
$$

Solution:

$$
\begin{aligned}
I_{\mathrm{A}} & =\frac{\left|\begin{array}{cc}
10 & -1000 \\
-6 & 1680
\end{array}\right|}{\left|\begin{array}{cc}
1270 & -1000 \\
-1000 & 1680
\end{array}\right|} & I_{\mathrm{B}} & =\frac{\left|\begin{array}{cc}
1270 & 10 \\
-1000 & -6
\end{array}\right|}{\left|\begin{array}{cc}
1270 & -1000 \\
-1000 & 1680
\end{array}\right|} \\
& =9.53 \mathrm{~mA} & & =2.10 \mathrm{~mA}
\end{aligned}
$$

Copyright © 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved

Summary: Solving Simultaneous Equations (8 of 10)
Solution:
Pressto open the matrix menu. Choose EDIT and Enter to enter values into the [A] matrix (the coefficient matrix). Repeat for the $[B]$ matrix. The screens for entering the matrixes are shown:


P Pearson Copyright © 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved

## Summary: Solving Simultaneous Equations (7 of 10)

Many scientific calculators allow you to solve simultaneous equations. The specific method depends on your particular calculator, but you will always write the equations in standard form first and then input the number of equations, the coefficients, and the constants. Pressing the Solve key will show the values of the unknowns.

$$
\begin{aligned}
& a_{1,1} x_{1}+a_{1,2} x_{2}=b_{1} \\
& a_{2,1} x_{1}+a_{2,2} x_{2}=b_{2}
\end{aligned}
$$

Example:
Solve the same equations using the TI-84 Plus CE:

$$
\begin{aligned}
1270 I_{\mathrm{A}}-1000 I_{\mathrm{B}} & =10 \\
-1000 I_{\mathrm{A}}+1680 I_{\mathrm{B}} & =-6
\end{aligned}
$$

(P) Pearson

Copyright © 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved

## Summary: Solving Simultaneous Equations (9 of 10)

Matrix math is done on the home screen. Press mand to quit and return to the home screen. Press and select [A] from the Names menu. Press $\quad x^{x^{+1}}$ to invert the [A] matrix. Now press $x$ and select [B] from the Names menu. The screen should appear as shown.
Press enter to solve.


## Summary: Solving Simultaneous Equations (10 of 10)

The solution matrix shows $I_{A}$ and $I_{B}$ in amperes. The result confirms the previous calculations.


Note: Some people prefer to solve matrices using a computer program such as Excel to solve matrices using a spreadsheet.
(P) Pearson

Copyright © 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved

## Summary: Branch current method (2 of 3)

Example:
Solve for the currents using the branch current method.
Solution:
5. Solve the equations from steps 3 and 4 (see next slide).

$$
\begin{aligned}
& 0.270 I_{1}+1.0 I_{2}-10=0 \\
& -1.0 I_{2}-0.68 I_{3}+6.0=0 \\
& I_{1}+I_{3}=I_{2}
\end{aligned}
$$



## Summary: Branch current method (1 of 3)

In the branch current method, you can solve for the currents in a circuit using simultaneous equations.
Steps:

1. Assign a current in each branch in an arbitrary direction.
2. Show polarities according to the assigned directions.
3. Apply KVL in each closed loop.
4. Apply KCL at nodes such that all branches are included.
5. Solve the equations from steps 3 and 4.

Copyright © 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved

## Summary: Branch current method (3 of 3)

Solution:
In standard form, the equations are

$$
\begin{aligned}
0.270 I_{1}+1.0 I_{2}+0 & =10 \\
0-1.0 I_{2}-0.68 I_{3} & =-6.0 \\
I_{1}-I_{2}+I_{3} & =0
\end{aligned}
$$

The negative result for $I_{3}$ indicates the current direction is opposite to the assumed direction.

Solving: $I_{1}=9.53 \mathrm{~mA}, I_{2}=7.43 \mathrm{~mA}, I_{3}=-2.10 \mathrm{~mA}$


## Summary: Loop current method (1 of 3)

In the loop current method, you can solve for the currents in a circuit using simultaneous equations.
Steps:

1. Assign a current in each nonredundant loop in an arbitrary direction.
2. Show polarities according to the assigned direction of current in each loop.
3. Apply KVL around each closed loop.
4. Solve the resulting equations for the loop currents.

## P Pearson

## Summary: Loop current method (3 of 3)

## Solution:

Rearranging the loop equations into standard form:

$$
\begin{array}{ll}
1.270 I_{A}-1.0 I_{B}=10 & I_{1}=I_{\mathrm{A}}=9.53 \mathrm{~mA} \\
-1.0 I_{A}+1.68 I_{B}=-6.0 & I_{2}=I_{\mathrm{A}}-I_{\mathrm{B}}=7.43 \mathrm{~mA} \\
I_{A}=9.53 \mathrm{~mA} & I_{3}=I_{\mathrm{B}}=2.10 \mathrm{~mA} \\
I_{B}=2.10 \mathrm{~mA} &
\end{array}
$$



P Pearson
Copyright © 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved

## Summary: Loop current method (2 of 3)

Example:
Solve for the currents using the loop current method.
Solution:
4. Solve the resulting equations for the loop currents (see following slide).

$$
\begin{array}{ll}
-10+0.270 I_{A}+1.0\left(I_{A}-I_{B}\right)=0 & \text { Notice that the polarity of } \\
1.0\left(I_{B}-I_{A}\right)+0.68 I_{B}+6.0=0 & R_{3} . \text { changes depending } \\
\text { on the loop. }
\end{array}
$$

P Pearson Copyright © 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved

## Summary: Loop current method applied to circuits with more than two loops

The loop current method can be applied to more complicated circuits, such as the Wheatstone bridge. The steps are the same as shown previously.

The advantage to the loop method for the Wheatstone bridge is that it has only 3 unknowns.


P Pearson
Copyright © 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved

## Summary

Example:
Write the loop current equation for Loop A in the Wheatstone bridge:

$$
-15+0.68\left(I_{A}-I_{B}\right)+0.68\left(I_{A}-I_{C}\right)=0
$$



## Summary: Node voltage method (2 of 3)

Example:
Solve the same problem as before using the node voltage method.

Solution:
5. Write KCL in terms of the voltages (next slide).

$$
I_{1}=\frac{V_{S 1}-V_{A}}{R_{1}} \quad I_{2}=\frac{V_{A}}{R_{2}} \quad I_{3}=\frac{V_{S 2}-V_{A}}{R_{3}}
$$

$$
I_{1}+I_{3}=I_{2}
$$



P Pearson

## Summary: Node voltage method (1 of 3)

In the node voltage method, you can solve for the unknown voltages in a circuit using KCL.
Steps:

1. Determine the number of nodes.
2. Select one node as a reference. Assign voltage designations to each unknown node.
3. Assign currents into and out of each node except the reference node.
4. Apply KCL at each node where currents are assigned.
5. Express the current equations in terms of the voltages and solve for the unknown voltages using Ohm's law.

P Pearson

## Summary: Node voltage method (3 of 3)

Solution:

$$
\begin{aligned}
& \frac{V_{S 1}-V_{\mathrm{A}}}{R_{1}}+\frac{V_{S 2}-V_{\mathrm{A}}}{R_{3}}=\frac{V_{\mathrm{A}}}{R_{2}} \quad \frac{10-V_{\mathrm{A}}}{0.27}+\frac{6.0-V_{\mathrm{A}}}{0.68}=\frac{V_{\mathrm{A}}}{1.0} \\
& 0.68\left(10-V_{\mathrm{A}}\right)+0.27\left(6.0-V_{\mathrm{A}}\right)=(0.27)(0.68) V_{\mathrm{A}}=0.184 V_{\mathrm{A}} \\
& -0.68 V_{\mathrm{A}}-0.27 V_{\mathrm{A}}-0.183 V_{\mathrm{A}}=-6.8-1.62 \\
& V_{A}=7.43 \mathrm{~V}
\end{aligned}
$$



P Pearson
Copyright © 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved

## Key Terms

```
Branch One current path that connects two nodes.
Determinant The solution of a square matrix consisting of an array, resulting in a specific value
Loop A closed current path in a circuit.
Matrix An array of numbers.
Node The junction of two or more components.
Simultaneous A set of \(n\) equations containing \(n\) equations unknowns, where \(n\) is a number with a value of 2 or more.
```

Copyright © 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved

## Quiz (2 of 11)

2. In standard form, the constants for a set of simultaneous equations are written
a. in front of the first variable
b. in front of the second variable
c. on the right side of the equation
d. all of the above

## Quiz (1 of 11)

1. In a set of simultaneous equations, the coefficient that is written $a_{1,2}$ appears in
a. the first equation
b. the second equation
c. both of the above
d. none of the above

Copyright © 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved

## Quiz (3 of 11)

3. To solve simultaneous equations, the minimum number of independent equations must be at least
a. two
b. three
c. four
d. equal to the number of unknowns

## Quiz (4 of 11)

4. In the equation $a_{1,1} x_{1}+a_{1,2} x_{2}=b_{1}$, the quantity $b_{1}$ represents
a. a constant
b. a coefficient
c. a variable
d. none of the above

## Quiz (5 of 11)

5. The value of the determinant $\left(\begin{array}{ll}3 & 5 \\ 2 & 8\end{array}\right)$ is
a. 4
b. 14
C. 24
d. 34

## Quiz (7 of 11)

7. A negative result for a current in the branch method means
a. there is an open path
b. there is a short circuit
c. the result is incorrect
d. the direction of current is opposite to the assumed direction

## Quiz (8 of 11)

8. To solve a circuit using the loop method, the equations are first written for each loop by applying
a. KCL
b. KVL
c. Ohm's law
d. Thevenin's theorem

## Quiz (10 of 11)

10. In the node voltage method, the equations are developed by first applying
a. KCL
b. KVL
c. Ohm's law
d. Thevenin's theorem

## Quiz (9 of 11)

9. A Wheatstone bridge can be solved using loop equations. The minimum number of nonredundant loop equations required is
a. one
b. two
c. three
d. four

## Quiz (11 of 11)

Answers:

1. $a$
2. c
3. $d$
4. a
5. b
6. b
7. d
8. b
9. c
10. a
(P) Pearson

## Copyright

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

