
1

Strings

2

Topics
• Basic String Operations

• String Slicing

• Testing, Searching, and Manipulating Strings

3

Basic String Operations
• Many types of programs perform operations on strings

• In Python, many tools for examining and manipulating
strings

– Strings are sequences, so many of the tools that work
with sequences work with strings

4

Accessing the Individual Characters in
a String (1 of 4)

• To access an individual character in a string:
– Use a for loop

▪ Format: for character in string:
▪ Useful when need to iterate over the whole string, such

as to count the occurrences of a specific character
– Use indexing

▪ Each character has an index specifying its position in the
string, starting at 0

▪ Format: character = my_string[i]

Accessing the Individual Characters in
a String (2 of 4)

Figure 8-1 Iterating over the string 'Juliet'

5

5

Accessing the Individual Characters in
a String (3 of 4)

Figure 8-2 String indexes

Figure 8-3 Getting a copy of a character from a string

6

6

7

Accessing the Individual Characters in
a String (4 of 4)

•IndexError exception will occur if:
– You try to use an index that is out of range for the string

▪ Likely to happen when loop iterates beyond the end of
the string

•len(string) function can be used to obtain the
length of a string

– Useful to prevent loops from iterating beyond the end
of a string

8

String Concatenation
• Concatenation: appending one string to the end of

another string
– Use the + operator to produce a string that is a

combination of its operands
– The augmented assignment operator += can also be

used to concatenate strings
▪ The operand on the left side of the += operator must be

an existing variable; otherwise, an exception is raised

9

Strings Are Immutable (1 of 2)

• Strings are immutable
– Once they are created, they cannot be changed

▪ Concatenation doesn’t actually change the existing
string, but rather creates a new string and assigns the
new string to the previously used variable

– Cannot use an expression of the form
– string[index] = new_character

▪ Statement of this type will raise an exception

Strings Are Immutable (2 of 2)

Figure 8-4 The string ‘Carmen’ assigned to name

Figure 8-5 The string ‘Carmen Brown’ assigned to name

10

10

11

String Slicing
• Slice: span of items taken from a sequence, known as

substring
– Slicing format: string[start : end]

▪ Expression will return a string containing a copy of the
characters from start up to, but not including, end

▪ If start not specified, 0 is used for start index
▪ If end not specified, len(string) is used for end index

– Slicing expressions can include a step value and
negative indexes relative to end of string

12

Testing, Searching, and Manipulating
Strings
• You can use the in operator to determine whether

one string is contained in another string
– General format: string1 in string2

▪ string1 and string2 can be string literals or
variables referencing strings

• Similarly you can use the not in operator to
determine whether one string is not contained in
another string

13

String Methods (1 of 7)

• Strings in Python have many types of methods,
divided into different types of operations

– General format:
mystring.method(arguments)

• Some methods test a string for specific characteristics
– Generally Boolean methods, that return True if a

condition exists, and False otherwise

14

String Methods (2 of 7)

Table 8-1 Some string testing methods

Method Description
isalnum() Returns true if the string contains only alphabetic letters or digits and is at least one

character in length. Returns false otherwise.

isalpha() Returns true if the string contains only alphabetic letters and is at least one character
in length. Returns false otherwise.

isdigit() Returns true if the string contains only numeric digits and is at least one character in
length. Returns false otherwise.

islower() Returns true if all of the alphabetic letters in the string are lowercase, and the string
contains at least one alphabetic letter. Returns false otherwise.

isspace() Returns true if the string contains only whitespace characters and is at least one
character in length. Returns false otherwise. (Whitespace characters are spaces,
newlines (\n), and tabs (\t).

isupper() Returns true if all of the alphabetic letters in the string are uppercase, and the string
contains at least one alphabetic letter. Returns false otherwise.

15

String Methods (3 of 7)

• Some methods return a copy of the string, to which
modifications have been made

– Simulate strings as mutable objects

• String comparisons are case-sensitive
– Uppercase characters are distinguished from

lowercase characters
– lower and upper methods can be used for making

case-insensitive string comparisons

16

String Methods (4 of 7)

Table 8-2 String Modification Methods

Method Description
lower() Returns a copy of the string with all alphabetic letters converted to lowercase. Any

character that is already lowercase, or is not an alphabetic letter, is unchanged.

lstrip() Returns a copy of the string with all leading whitespace characters removed. Leading
whitespace characters are spaces, newlines (\n), and tabs (\t) that appear at the
beginning of the string.

lstrip(char) The char argument is a string containing a character. Returns a copy of the string with all
instances of char that appear at the beginning of the string removed.

rstrip() Returns a copy of the string with all trailing whitespace characters removed. Trailing
whitespace characters are spaces, newlines (\n), and tabs (\t) that appear at the end of
the string.

rstrip(char) The char argument is a string containing a character. The method returns a copy of the
string with all instances of char that appear at the end of the string removed.

strip() Returns a copy of the string with all leading and trailing whitespace characters removed.

strip(char) Returns a copy of the string with all instances of char that appear at the beginning and the
end of the string removed.

upper() Returns a copy of the string with all alphabetic letters converted to uppercase. Any
character that is already uppercase, or is not an alphabetic letter, is unchanged.

17

String Methods (5 of 7)

• Programs commonly need to search for substrings

• Several methods to accomplish this:
– endswith(substring): checks if the string ends

with substring
▪ Returns True or False

– startswith(substring): checks if the string starts
with substring
▪ Returns True or False

18

String Methods (6 of 7)

• Several methods to accomplish this (cont’d):
– find(substring): searches for substring within

the string
▪ Returns lowest index of the substring, or if the substring

is not contained in the string, returns -1
– replace(substring, new_string):

▪ Returns a copy of the string where every occurrence of
substring is replaced with new_string

19

String Methods (7 of 7)

Method Description
endswith(substring) The substring argument is a string. The method returns true if the

string ends with substring.

find(substring) The substring argument is a string. The method returns the lowest
index in the string where substring is found. If substring is not
found, the method returns −1.

replace(old, new) The old and new arguments are both strings. The method returns a
copy of the string with all instances of old replaced by new.

startswith(substring) The substring argument is a string. The method returns true if the
string starts with substring.

Table 8-3 Search and replace methods

20

The Repetition Operator
• Repetition operator: makes multiple copies of a string

and joins them together
– The * symbol is a repetition operator when applied to a

string and an integer
▪ String is left operand; number is right

– General format: string_to_copy * n
– Variable references a new string which contains

multiple copies of the original string

21

Splitting a String (1 of 2)

•split method: returns a list containing the words in
the string

– By default, uses space as separator
– Can specify a different separator by passing it as an

argument to the split method

22

Splitting a String (2 of 2)

• Examples:

>>> my_string = 'One two three
four'
>>> word_list = my_string.split()
>>> word_list
['One', 'two', 'three', 'four']
>>>

>>> my_string = '1/2/3/4/5'
>>> number_list = my_string.split('/')
>>> number_list
['1', '2', '3', '4', '5']
>>>

23

String Tokens (1 of 4)

• Sometimes a string contains substrings that are
separated by a special character

– Example:

– This string contains the substrings peach, raspberry,
strawberry, and vanilla

– The substrings are separated by the space character
– The substrings are known as tokens and the

separating character is known as the delimiter

'peach raspberry strawberry vanilla'

24

String Tokens (2 of 4)

• Example:

– This string contains the tokens 17, 92, 81, 12, 46, and 5
– The delimiter is the ; character

'17;92;81;12;46;5'

25

String Tokens (3 of 4)

• Tokenizing is the process of breaking a string into
tokens

• When you tokenize a string, you extract the tokens
and store them as individual items

• In Python you can use the split method to tokenize a
string

26

String Tokens (4 of 4)

• Examples:

>>> str = 'peach raspberry strawberry vanilla'
>>> tokens = str.split()
>>> tokens
['peach', 'raspberry', 'strawberry', 'vanilla']
>>>

>>> my_address = 'www.example.com'
>>> tokens = my_address.split('.')
>>> tokens
['www', 'example', 'com']
>>>

27

Summary
• This chapter covered:

– String operations, including:
▪ Methods for iterating over strings
▪ Repetition and concatenation operators
▪ Strings as immutable objects
▪ Slicing strings and testing strings
▪ String methods
▪ Splitting a string

