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Introduction

Nonlinear ODEs are typically di�cult to solve analytically. To-
day, three techniques having a modest range of applicability will
be presented:

1 Separating variables,

2 Transforming the nonlinear ODE into a linear one,

3 For almost linear systems, successive approximations.

Note that the great majority of the times, engineers solve non-
linear di↵erential equations by numerical integration on digital
computers.
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Nonlinear Separable ODEs

The first method applies only to first-order separable equations;
that is, to ODEs of the form

dy

dt
= f(t)g(y), y(t0) = y0 (1)

To solve Eq. 4.1, separating variables can be applied by dividing
through by g(y):

1

g(y)

dy

dt
= f(t)

Then the shortcut procedure, which was introduced and justified
in Week 3, can be employed:

Z y

y(t0)

dy

g(y)
=

Z t

t0

f(⌧)d⌧ (2)
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Nonlinear Separable ODEs

Sometimes the integration on both sides of Eq. 4.2 can be per-
formed and an implicit equation is obtained such that

G(y) = F (t) (3)

In rare circumstances, we are then able to solve Eq. 4.3 for y
as an explicit function of t. In the typical case when we cannot,
we can still use Eq. 4.3 to determine the values of the function
through graphical techniques. The nonlinear problems in this
text have been selected so that they can be solved explicitly.
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Example: Sounding Rocket Trajectory

As an example of the application of nonlinear equations in engi-
neering, a sounding rocket that flies vertically to carry instru-
ments into the upper atmosphere or edge of space for scien-
tific measurements is considered. Roketsan operates a sounding
rocket program as part of its activities.

Three fundamental questions flash about the sounding rocket’s
trajectory:

1 What is its maximum speed going up?

2 What altitude does it reach?

3 What is its maximum speed coming down?
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The first prototype sounding rocket of Turkey
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Q1. Maximum Speed Going Up (1/3)

The equation of motion for the thrusting phase (i.e., when the
rocket motor is on) can be derived from the conservation of mo-
mentum and mass. The total rate of change of the momentum
of the vehicle and the gases exiting from its engine (considered
as a unit) is zero. The vehicle accelerates in reaction to the hot
gases exiting it at high speed. The mass of the vehicle is reduced
as the gases leave. The equation of motion is

m
dV

dt
+

dm

dt
c = 0

or
dV

dt
= � 1

m

dm

dt
c (4)

where V is the speed of the vehicle, m is the mass, and c is the
speed of the exit gases relative to the rocket.
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Q1. Maximum Speed Going Up (2/3)

There are three variables in this equation. We can eliminate time
by writing

dV

dt
=

dV

dm

dm

dt
and then, cancelling dm/dt from both sides, Eq. 4.4 becomes the
separable equation

dV

dm
= � c

m
Following the procedure outlined in Eq. 4.1 through Eq. 4.3,

dV = �c
dm

m
Z V (m)

0
dV = �c

Z m

m0

dm

m
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Q1. Maximum Speed Going Up (3/3)

V (m) = c ln(
m0

m
)

and in particular, at rocket burnout, that is, the moment when
the rocket fuel is exhausted,

Vb = c ln(
m0

mb
) (5)

We will see shortly that Vb, the velocity at burnout, is the max-
imum speed the sounding rocket attains on its way up. Eq. 4.5
is the so-called rocket equation.
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Q2. Maximum Altitude (1/7)

Newton’s second law of motion is F = ma. After burnout and
on the way up, the sounding rocket’s trajectory is governed by
the nonlinear di↵erential equation

mb
dV

dt
= �mb � (

1

2
⇢SCD)V

2 (6)

Acceleration is dV/dt, the derivative of velocity with respect to
time, and the forces are weight and air resistance (drag), both
acting in the downward direction. Drag is proportional to the air
density ⇢, the rocket’s cross-sectional area S, its drag coe�cient
CD (at low speeds a constant typically around 0.02 or 0.03), and
the square of the velocity.
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Q2. Maximum Altitude (2/7)

We can rewrite Eq. 4.6 as

dV

dt
= �g � kV 2 (7)

where

k =
⇢SCD

2mb
(8)

and then separate variables:

dV

g + kV 2
= �dt (9)

We want to make a substitution to change the left-hand side
of Eq. 4.9 into the form dv/(1 + v2), which we know how to
integrate.
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Q2. Maximum Altitude (3/7)

We accomplish this by defining v = V
p

k/g. After a little alge-
bra, Eq. 4.9 becomes

dV

1 + v2
= �

p
gkdt (10)

Integrating the right-hand side of Eq. 4.10 from 0 to t, and
the left-hand side correspondingly from vb = Vb

p
k/g to v(t) =

V (t)
p

k/g:

arctan (v(t))� arctan (vb) = �
p

gkt (11)

Solving Eq. 4.11

v(t) = tan (arctan (vb)�
p

gkt)
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Q2. Maximum Altitude (4/7)

V (t) =
p

g/k tan (arctan (
p

k/gVb)�
p

gkt) (12)

Eq. 4.12 tells us that the maximum speed on the way up is Vb.
This is as we would expect from physical intuition; drag and
gravity can only reduce the speed gained with the rocket engine.
Now, the altitude h(t) is given by

h(t) =

Z t

0
V (⌧)d⌧ =

Z t

0

p
g/k tan (arctan (

p
k/gVb)�

p
gk⌧)d⌧

(13)
Eq. 4.13 may look formidable but it is not di�cult to integrate.
Let t0 =

p
gk⌧ and

arctan (
p

k/gVb) = t0a (14)
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Q2. Maximum Altitude (5/7)

Then Eq. 4.13 becomes

h(t) =
1

k

Z p
gkt

0
tan (t0a � t0) =

1

k

Z p
gkt

0

sin (t0a � t0)

cos (t0a � t0)
dt0

=
1

k
ln

✓
cos (t0a �

p
gkt)

cos (t0a)

◆
(15)

The maximum altitude (apogee) is reached when V (t) = 0. From
Eq. 4.12 and Eq. 4.14, this occurs when

p
gkt = t0a. Then, from

Eq. 4.15, the maximum altitude ha is given by

ha =
1

k
ln

✓
1

cos (t0a)

◆
(16)
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Q2. Maximum Altitude (6/7)

From Eq. 4.14, tan(t0a) =
q

kV 2
b /g, so

hd =
1

k
ln

✓
1

cos(t0a)

◆
=

1

k
ln(sec(t0a)) =

1

k
ln

✓q
1 + kV 2

b /g

◆

=
1

2k
ln

�
1 + kV 2

b /g
�

(17)

Summarising, we have found that the sounding rocket’s maxi-
mum altitude is given by

ha =
1

2k
ln

�
1 + kV 2

b /g
�

(18)

where k = ⇢SCD/2mb.
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Q2. Maximum Altitude (7/7)

As a check on this result, consider the case where the e↵ect of drag
is very small; that is, when k is small. Recalling that ln(1+x) ⇠= x
when x is small, Eq. 4.18 becomes

ha =
1

2k
ln

�
1 + kV 2

b /g
� ⇠=

V 2
b

2g
(19)

which is the classic drag-free result.
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Q3. Maximum Speed Coming Down (1/6)

When the sounding rocket is on the way down, its equation of
motion is

mb
dV

dt
= �mbg +

✓
1

2
⇢SCD

◆
V 2 (20)

With the same definitions and substitutions as in maximum al-
titude, Eq. 4.20 can be separated into the form

dv

1� v2
= �

p
gkdt (21)

The left-hand side of Eq. 4.21, in contrast to that in Eq. 4.10,
is not a familiar integrand. We proceed via a partial fraction
expansion:

dv

1� v2
=

✓
1

1� v2

◆
dv =

✓
c1

1� v
+

c2
1 + v

◆
dv = �

p
gkdt (22)
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Q3. Maximum Speed Coming Down (2/6)

Several methods exist to find the coe�cients c1 and c2. One way
is to recombine over the common denominator:

c1
1� v

+
c2

1 + v
=

1

1� v2

c1(1 + v) + c2(1� v)

1� v2
=

(c1 + c2) + (c1 � c2)v

1� v2
=

1

1� v2

and then match coe�cients of powers of v in the numerators.
If two polynomials of the same order are everywhere equal then
their coe�cients are equal. The solutions are c1 = c2 = 1/2.
Returning to Eq. 4.22, we have

✓
1/2

1� v
+

1/2

1 + v

◆
dv = �

p
gkdt = �dt0 (23)
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Q3. Maximum Speed Coming Down (3/6)

Integrating the right-hand side of Eq. 4.23 from t0 = t0a and the
left-hand side correspondingly from v = 0,

�(1/2) ln(1� v) + (1/2) ln(1 + v) = �(t0 � t0a)

ln

✓
1 + v

1� v

◆
= �2(t0 � t0a)

1 + v

1� v
= e�2(t0�t0a)

1 + v = (1� v)e�2(t0�t0a)

�v(1 + e�2(t0�t0a)) = 1� e�2(t0�t0a)

v = �1� e�2(t0�t0a)

1 + e�2(t0�t0a)
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Q3. Maximum Speed Coming Down (4/6)

Multiplying numerator and denominator by et
0�t0a yields a more

favoured form

v = �e✓ � e�✓

e✓ + e�✓
(24)

where ✓ = t0 � t0a =
p
gk(t� ta).

The right-hand side of Eq. 4.24 is the negative of a function called
the hyperbolic tangent of ✓, written as tanh(✓). In dimensional
form, from Eq. 4.24, the sounding rocket’s velocity on the way
down is given by

V = �
p

g/k

✓
e✓ � e�✓

e✓ + e�✓

◆
= �

p
g/k tanh(✓) (25)

where ✓ =
p
gk(t � ta) and ta is the time of apogee, the instant

before the rocket begins to fall.
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Q3. Maximum Speed Coming Down (5/6)

To determine the maximum speed, we first integrate Eq. 4.25 to
obtain h(t), find the time tI when the rocket impacts the ground,
and then use Eq. 4.25 to calculate the speed at that point.
The result is that, on its way down, the sounding rocket reaches
its maximum speed just before it strikes the ground and its value
is

Vm =
�Vbq

1 + kV 2
b /g

(26)

As a check, note that for vanishing k, that is, for very low drag,
Eq. 4.26 becomes

Vm = �Vb (27)

as we expect from conservation of energy in the case where there
is no atmosphere.
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Q3. Maximum Speed Coming Down (6/6)

On the other hand, when kV 2
b /g >> 1, Eq. 4.26 becomes

Vm = �
p

g/k (28)

In this case Vm is independent of Vb. The value
p

g/k is called
the terminal velocity.
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Transforming the Nonlinear ODE into a Linear One

As it happens, the nonlinear equations for both upward and
downward rocket flight (Eqs. 3.6 and 3.20) can be transformed
into linear ones by changing the independent variable from t to
h and the dependent variable from V to V 2/2. This shortcut
method cannot determine the way velocity varies with time, but
it can yield both the maximum altitude and the maximum speed
on the way down.

It is good to know that the possibility of transforming nonlinear
ODEs into linear ones exists but, unfortunately, such shortcuts
are unavailable for most nonlinear problems and little can be said
in general about when it is reasonable to look for one.
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Exact Equations (1/9)

A di↵erential expression M(x, y)dx + N(x, y)dy is an exact dif-
ferential in a region R of the xy-plane if it corresponds to the
di↵erential of some function f(x, y).

A first-order di↵erential equation of the form

M(x, y)dx+N(x, y)dy = 0

is said to be an exact equation if the expression on the left side
is an exact di↵erential.
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Criterion for an Exact Di↵erential (2/9)

Let M(x, y) and N(x, y) be continuous and have continuous first
partial derivatives in a rectangular region R defined by a < x < b,
c < y < d.

Then a necessary and su�cient condition thatM(x, y)dx+N(x, y)dy
be an exact di↵erential is

@M

@y
=

@N

@x
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Solving an Exact DE (3/9)

Solve (e2y � y cosxy)dx+ (2xe2y � x cosxy + 2y)dy = 0.

Solution: The equation is exact because

@M

@y
= 2e2y + xy sinxy � cosxy =

@N

@x

Start with the assumption that @f/@y = N(x, y)

@f

@y
= 2xe2y � x cosxy + 2y

f(x, y) = 2x

Z
e2ydy � x

Z
cosxydy + 2

Z
ydy + h(x)
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Solving an Exact DE (4/9)

Remember, the reason x can come out in front of the symbol
R

is that in the integration with respect to y, x is treated as an
ordinary constant. It follows that

f(x, y) = xe2y � sinxy + y2 + h(x)

@f

@x
= e2y � y cosxy + h0(x) = e2y � y cosxy

and so h0(x) = 0 or h(x) = c.

Hence a family of solutions is

xe2y � sinxy + y2 + c = 0
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Integrating Factors (5/9)

Recall from the last week that the left-hand side of the linear
equation y0 + p(t)y = g(t) can be transformed into a derivative
when we multiply the equation by an integrating factor. The
same basic idea sometimes works for a nonexact di↵erential equa-
tion M(x, y)dx+N(x, y)dy = 0.

It is sometimes possible to find an integrating factor µ(x, y) so
that after multiplying, the left-hand side of

µ(x, y)M(x, y)dx+ µ(x, y)N(x, y)dy = 0

is an exact di↵erential. In an attempt to find µ we turn to the
criterion for exactness. The above equation is exact if and only if
(µM)y = (µN)x, where the subscripts denote partial derivatives.
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Integrating Factors (6/9)

By the product rule of di↵erentiation the last equation is the
same as µMy + µyM = µNx + µxN or

µxN � µyM = (My �Nx)µ

If µ depends only on the variable y, then

dµ

dy
=

Nx �My

M
µ

In this case, if (Nx�My)/M is a function of y, only then we can
solve the above equation for µ.
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Integrating Factors (7/9)

To sum up, the results for the DE

M(x, y)dx+N(x, y)dy = 0

If (My �Nx)/N is a function of x alone, then an
integrating factor for the DE is

µ(x) = e
R My�Nx

N dx

If (Nx �My)/M is a function of y alone, then an
integrating factor for the DE is

µ(y) = e
R Nx�My

M dy

Dr Kasım ZOR Department of Electrical and Electronic Engineering

EEE225 - Week 4: First-Order Nonlinear ODEs

Transforming a Nonexact DE to an Exact DE (8/9)

The nonlinear first-order DE

xydx+ (2x2 + 3y2 � 20)dy = 0

is not exact. We find the partial derivativesMy = x andNx = 4x.
The first quotient from µ(x) gets us nowhere since

My �Nx

N
=

x� 4x

2x2 + 3y2 � 20
=

�3x

2x2 + 3y2 � 20

depends on x and y. However µ(y) yields a quotient that depends
only on y:

Nx �My

M
=

4x� x

xy
=

3x

xy
=

3

y
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Transforming a Nonexact DE to an Exact DE (9/9)

The integrating factor is then

e
R

3

y dy = e3 ln y = eln y3 = y3

After multiplying the given DE by µ(y) = y3, the resulting equa-
tion is

xy4dx+ (2x2y3 + 3y5 � 20y3)dy = 0

You are supposed to verify that the last equation is now exact
and to show that a family of solutions is

1

2
x2y4 +

1

2
y6 � 5y4 = c
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Bernoulli’s Equation (1/3)

The DE
dy

dx
+ p(x)y = f(x)yn

where n is any real number, is called Bernoulli’s equation and
is named after the Swiss mathematician Jacob Bernoulli (1654
–1705).

Note that for n = 0 and n = 1, the above equation is linear. For
n 6= 0 and n 6= 1, the substitution

u = y1�n

reduces any nonlinear equation of the same form in the DE to a
linear one.

Dr Kasım ZOR Department of Electrical and Electronic Engineering

EEE225 - Week 4: First-Order Nonlinear ODEs

Solving a Bernoulli DE (2/3)

Solve x dy
dx + y = x2y2.

Solution: Rewrite the given DE in the form of Bernoulli DE by
dividing by x:

dy

dx
+

1

x
y = xy2

With n = 2, substitute y = u�1 via chain rule and

dy

dx
= �u�2du

dx

into the given equation and simplify. The result is

du

dx
� 1

x
= �x
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Solving a Bernoulli DE (3/3)

The integrating factor for this linear equation is

e�
R

1

xdx = e� lnx = elnx�1

= x�1

Integrating
d

dx
[x�1u] = �1

gives x�1u = �x + c or u = �x2 + cx. Since u = y�1, we have
y = 1/u, and so a solution of the given equation is

y =
1

(�x2 + cx)
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Successive Approximations for Almost Linear Systems

Consider the electric circuit shown in Figure 3.1.

Figure 1: An RL electric circuit with a sine-wave voltage source
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Successive Approximations for Almost Linear Systems

By Ohm’s law, the voltage drop over the resistor in the direc-
tion of current is V = IR, the voltage drop over an inductor is
LdI/dt = (L/R)(dV/dt), and the voltage drop over the sine-wave
source is �V0 sin!t.

Here, V0 is the amplitude of the sine wave, in volts, and ! is the
frequency of the oscillation in radians per second. Assume that
the sine wave source turns on at t = 0 and that no current is
flowing in the circuit at that time. Applying KVL to this circuit
results in

L
dI

dt
+ IR = V0 sin!t (29)
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Successive Approximations for Almost Linear Systems

Dividing through by L and defining � = R/L and I0 = V0/R,
Eq. 4.29 can be written as

dI

dt
+ �I = �I0 sin!t (30)

Suppose now that resistor in the circuit is slightly nonlinear. The
resistance increase can occur when higher voltages raise the re-
sistor’s temperature. Then the circuit equation is modified to

dI

dt
+ �I + �"I3 = �I0 sin!t (31)

Nonlinear Eq. 4.31 cannot be solved in closed form in the same
way that the linear Eq. 4.30 can.
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Successive Approximations for Almost Linear Systems

However, if the nonlinear term "I3 is not too large compared to
I0, that is, if the system modelled by Eq. 4.31 is almost linear,
then we can employ a technique called successive approximations.
We solve the nonlinear problem as a sequence of linear problems.

The first approximation ignores the nonlinearity altogether and
is found by solving Eq. 4.30. Call that solution I1. The next
solution is obtained by approximating the nonlinear term as the
known function of time �"I31 . Then we obtain I2 through

dI2
dt

+ �I2 = �I0 sinwt� �"I31 (32)

I2(t) =

Z t

0
e��(t�⌧)(�I0 sin!⌧ � �"I31 (⌧))d⌧ (33)
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Successive Approximations for Almost Linear Systems

Recall Eqs. 2.17 and 2.34, now

Z t

0
e��(t�⌧)�I0 sin(!⌧)d⌧ = I1(t) (34)

so, Eq. 4.33 becomes

I2(t) = I1(t)� �"

Z t

0
e��(t�⌧)I31 (⌧)d⌧ (35)

Proceeding in this way, we calculate In+1(t) via

In+1(t) = I1(t)� �"

Z t

0
e��(t�⌧)I3n(⌧)d⌧ (36)
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Successive Approximations for Almost Linear Systems

Focusing on the steady-state solution only, performing the inte-
gral in Eq. 4.35 leads to

I2(t) = G1I0(sin!t� ⌘2(t)) (37)

where the e↵ect of the nonlinearity is captured in ⌘2(t):

⌘2(t) =
↵

4
(3G1 sin(!t� 2✓1)�G3 sin(3!t� 3✓1 � ✓3)) (38)

and

Gn =
�p

�2 + (n!)2
(39)

✓n = arctan
⇣n!

�

⌘
(40)
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Successive Approximations for Almost Linear Systems

↵ = " (G1Io)
2 (41)

If we were to continue the sequence we would find

In(t) = I1(t)�G1I0⌘n(t) (42)

where ⌘n(t) is of the form

⌘n(t) =
NnX

m=1

kmn sin(m!t� �mn) (43)

Eqs. 3.42 and 3.43 are specific examples of an important general
fact.
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Successive Approximations for Almost Linear Systems

When driven by a sine-wave source of frequency !, stable and
damped LTI systems respond in steady state with oscillations
of that frequency only. Nonlinear systems, on the other hand,
introduce multiples of that frequency, called harmonics. The
phenomenon is called harmonic distortion and electrical engineers
usually strive to avoid it by operating a system within the linear
range of all of its analogue components.

It is easy to generalise the process described here to systems of
higher order. However, the professional standard in engineering
for solving nonlinear ODEs is numerical integration. Approxi-
mate analytical solutions can be valuable for providing insight
and for checking for coding errors in di↵erential equations to be
solved by numerical integration.
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Concluding Remarks (1/2)

The creator of this lecture note respects and obeys copyright is-
sues strictly and notes that these slides are adapted into LATEXBeamer
from the sources as follows

D. G. Zill, Advanced Engineering Mathematics, 6th Ed.,
Jones Bartlett Learning, 2018.

E. Kreyszig, H. Kreyszig, and E. J. Norminton, Advanced
Engineering Mathematics, 10th Ed., Wiley, 2011.

G. James and P. Dyke, Advanced Modern Engineering
Mathematics, 5th Ed., Pearson, 2018.

D. V. Kalbaugh, Di↵erential Equations for Engineers, 1st
Ed., CRC Press, 2018.

A. Ü. Keskin, Ordinary Di↵erential Equations for
Engineers, 1st Ed., Springer, 2019.
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Concluding Remarks (2/2)

The creator of this lecture note respects and obeys copyright is-
sues strictly and notes that these slides are adapted into LATEXBeamer
from the sources as follows

C. Constanda, Di↵erential Equations, 2nd Ed., Springer,
2017.

W. E. Boyce, R. C. DiPrima, and D. B. Meade,
Elementary Di↵erential Equations and Boundary Value
Problems, 11th Ed., Wiley, 2017.

B. J. Lewis, E. N. Önder, and A. A. Prudil, Advanced
Mathematics for Engineering Students, 1st Ed.,
Butterworth-Heinemann, 2022.

Roketsan Sounding Rocket 0.1 Flight Tests, Access Link:
https://www.youtube.com/watch?v=ejhdoTiEL5E
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