
EEE110 Computer Programming
Laboratory, Spring 2022

Kasım Zor, Elanur Ekici, and Emre Yorat

Week 3 (Thursday, 17 March 2022)

print with Single Quotation Mark

Res. Assist. Emre Yorat
Room 128, North Wing, Prefab Building, Adana Alparslan Türkeş Sci & Tech Un
iversity
Sarıçam, Adana, 01250, Turkey

 File "<ipython-input-2-ae0c4672a876>", line 1
 print('One
 ^
SyntaxError: EOL while scanning string literal

print with Double Quotation Mark

Res. Assist. Emre Yorat
Room 128, North Wing, Prefab Building, Adana Alparslan Türkeş Sci & Tech Un
iversity
Sarıçam, Adana, 01250, Turkey

 File "<ipython-input-4-c312089f618f>", line 1
 print("One
 ^
SyntaxError: EOL while scanning string literal

print with Triple Quotation Mark

I'm reading "Hannibal Rising" tonight.

In [1]: print('Res. Assist. Emre Yorat')
print('Room 128, North Wing, Prefab Building, Adana Alparslan Türkeş Sci & Tech University'
print('Sarıçam, Adana, 01250, Turkey')

In [2]: print('One
 Two
 Three')

In [3]: print("Res. Assist. Emre Yorat")
print("Room 128, North Wing, Prefab Building, Adana Alparslan Türkeş Sci & Tech University"
print("Sarıçam, Adana, 01250, Turkey")

In [4]: print("One
 Two
 Three")

In [5]: print("""I'm reading "Hannibal Rising" tonight.""")

One
Two
Three

Variable

I am staying in room number
503

The top speed is
160
The distance traveled is
300

I am staying in room number 503

I have 2.75 in my account.
But now I have 99.95 in my account!

Storing Strings with the str Data Type

In [6]: print("""One
Two
Three""")

In [7]: # This program demonstrates a variable.
room = 503
print('I am staying in room number')
print(room)

In [8]: # Create two variables: top_speed and distance.
top_speed = 160
distance = 300

Display the values referenced by the variables.
print('The top speed is')
print(top_speed)
print('The distance traveled is')
print(distance)

In [9]: # This program demonstrates a variable.
room = 503
print('I am staying in room number', room)

In [10]: # This program demonstrates variable reassignment.
Assign a value to the dollars variable.
dollars = 2.75
print('I have', dollars, 'in my account.')

Reassign dollars so it references
a different value.
dollars = 99.95
print('But now I have', dollars, 'in my account!')

In [11]: # Create variables to reference two strings.
first_name = 'Emre'
last_name = 'Yorat'

Display the values referenced by the variables.
print(first_name, last_name)

Emre Yorat

Reading Input from the Keyboard

Hello Emre Yorat

Reading Numbers with the input Function

Here is the data you entered:
Name: Emre Yorat
Age: 25
Income: 7000.0

Performing Calculations

Your pay is 3700.0

Calculating a Percentage

In [12]: # Get the user's first name.
first_name = input('Enter your first name: ')

Get the user's last name.
last_name = input('Enter your last name: ')

Print a greeting to the user.
print('Hello', first_name, last_name)

In [13]: # Get the user's name, age, and income.
name = input('What is your name? ')
age = int(input('What is your age? '))
income = float(input('What is your income? '))

Display the data.
print('Here is the data you entered:')
print('Name:', name)
print('Age:', age)
print('Income:', income)

In [14]: # Assign a value to the salary variable.
salary = 2500.0

Assign a value to the bonus variable.
bonus = 1200.0

Calculate the total pay by adding salary
and bonus. Assign the result to pay.
pay = salary + bonus

Display the pay.
print('Your pay is', pay)

The sale price is 80.0

Calculating an Average
Determining the average of a group of values is a simple calculation: add all of the values

then divide the sum by the number of values. Although this is a straightforward

calculation, it is easy to make a mistake when writing a program that calculates an

average. For exam- ple, let’s assume that the variables a, b, and c each hold a value and

we want to calculate the average of those values. If we are careless, we might write a

statement such as the fol- lowing to perform the calculation:

average = a + b + c / 3.0

Can you see the error in this statement? When it executes, the division will take place

first. The value in c will be divided by 3, then the result will be added to a + b. That is not

the correct way to calculate an average. To correct this error, we need to put parentheses

around a + b + c, as shown here:

average = (a + b + c) / 3.0

Let’s step through the process of writing a program that calculates an average. Suppose

you have taken three tests in your computer science class, and you want to write a

program that will display the average of the test scores. Here is the algorithm:

1. Get the first test score.

2. Get the second test score.

3. Get the third test score.

4. Calculate the average by adding the three test scores and dividing the sum by 3.

5. Display the average.

In steps 1, 2, and 3 we will prompt the user to enter the three test scores. We will store

those test scores in the variables test1, test2, and test3. In step 4, we will calculate the

average of the three test scores. We will use the following statement to perform the

calculation and store the result in the average variable:

average = (test1 + test2 + test3) / 3.0

Last, in step 5, we display the average.

In [15]: # This program gets an item's original price and
calculates its sale price, with a 20% discount.

Get the item's original price.
original_price = float(input("Enter the item's original price: "))

Calculate the amount of the discount.
discount = original_price * 0.2

Calculate the sale price.
sale_price = original_price - discount

Display the sale price.
print('The sale price is', sale_price)

The average score is 53.333333333333336

The Remainder Operator

Here is the time in hours, minutes, and seconds:
Hours: 2.0
Minutes: 46.0
Seconds: 40.0

Converting a Math Formula to a Programming Statement
Suppose you want to deposit a certain amount of money into a savings account and leave

it alone to draw interest for the next 10 years. At the end of 10 years, you would like to

have $10,000 in the account. How much do you need to deposit today to make that

happen? You can use the following formula to find out:

In [16]: # Get three test scores and assign them to the
test1, test2, and test3 variables.
test1 = float(input('Enter the first test score: '))
test2 = float(input('Enter the second test score: '))
test3 = float(input('Enter the third test score: '))

Calculate the average of the three scores
and assign the result to the average variable.
average = (test1 + test2 + test3) / 3.0

Display the average.
print('The average score is', average)

In [17]: # Get a number of seconds from the user.
total_seconds = float(input('Enter a number of seconds: '))

Get the number of hours.
hours = total_seconds // 3600

Get the number of remaining minutes.
minutes = (total_seconds // 60) % 60

Get the number of remaining seconds.
seconds = total_seconds % 60

Display the results.
print('Here is the time in hours, minutes, and seconds:')
print('Hours:', hours)
print('Minutes:', minutes)
print('Seconds:', seconds)

P =
F

(1 + r)n

The terms in the formula are as follows:

P is the present value, or the amount that you need to deposit today.

F is the future value that you want in the account. (In this case, F is $10,000.)

r is the annual interest rate.

n is the number of years that you plan to let the money sit in the account.

In steps 1 through 3, we will prompt the user to enter the specified values. We will assign

the desired future value to a variable named future_value, the annual interest rate to a

variable named rate, and the number of years to a variable named years. In step 4, we

calculate the present value, which is the amount of money that we will have to deposit.

We will convert the formula previously shown to the following statement. The statement

stores the result of the calculation in the present_value variable.

present_value = future_value / (1.0 + rate)**years

In step 5, we display the value in the present_value variable.

You will need to deposit this amount: 1910.6446691360586

Formatting Numbers

The monthly payment is 416.6666666666667

The monthly payment is 416.67

Inserting Comma Separators

In [18]: # Get the desired future value.
future_value = float(input('Enter the desired future value: '))

Get the annual interest rate.
rate = float(input('Enter the annual interest rate: '))

Get the number of years that the money will appreciate.
years = int(input('Enter the number of years the money will grow: '))

Calculate the amount needed to deposit.
present_value = future_value / (1.0 + rate)**years

Display the amount needed to deposit.
print('You will need to deposit this amount:', present_value)

In [19]: # This program demonstrates how a floating-point
number is displayed with no formatting.
amount_due = 5000.0
monthly_payment = amount_due / 12
print('The monthly payment is', monthly_payment)

In [20]: # This program demonstrates how a floating-point
number can be formatted.
amount_due = 5000.0
monthly_payment = amount_due / 12
print('The monthly payment is', \
 format(monthly_payment, '.2f'))

Your annual pay is $60,000.00

Specifying a Minimum Field Width

 127.90
3465.15
 3.78
 264.82
 88.08
 800.00

Turtle Graphics: The Orion Constellation Program
Orion is one of the most famous constellations in the night sky. The topmost stars are

Orion's shoulders, the row of three stars in the middle are Orion's belt, and the bottom

two stars are Orion's knees. The diagram in the below figure shows the names of each of

these stars and the lines that are typically used to connect the stars.

In [21]: # This program demonstrates how a floating-point
number can be displayed as currency.
monthly_pay = 5000.0
annual_pay = monthly_pay * 12
print('Your annual pay is $', \
 format(annual_pay, ',.2f'), \
 sep='')

In [22]: # This program displays the following
floating-point numbers in a column
with their decimal points aligned.
num1 = 127.899
num2 = 3465.148
num3 = 3.776
num4 = 264.821
num5 = 88.081
num6 = 799.999

Display each number in a field of 7 spaces
with 2 decimal places.
print(format(num1, '7.2f'))
print(format(num2, '7.2f'))
print(format(num3, '7.2f'))
print(format(num4, '7.2f'))
print(format(num5, '7.2f'))
print(format(num6, '7.2f'))

In this section, we will develop a program that displays the stars, the star names, and the

constellation lines as they are shown in the above figure. The program will display the

constel- lation in a graphics window that is 500 pixels wide and 600 pixels high. The

program will display dots to represent the stars. We will use a piece of graph paper, as

shown in the following figure, to sketch the positions of the dots and determine their

coordinates.

We will be using the coordinates that are identified in the above figure. As you can

imagine, keeping track of the correct coordinates for each star can be difficult and

tedious. To make things more simple in our code, we will create the following named

constants to represent each star’s coordinates:

LEFT_SHOULDER_X = −70 LEFT_SHOULDER_Y = 200

RIGHT_SHOULDER_X = 80 RIGHT_SHOULDER_Y = 180

LEFT_BELTSTAR_X = −40 LEFT_BELTSTAR_Y = −20

MIDDLE_BELTSTAR_X = 0 MIDDLE_BELTSTAR_Y = 0

RIGHT_BELTSTAR_X = 40 RIGHT_BELTSTAR_Y = 20

LEFT_KNEE_X = −90 LEFT_KNEE_Y = −180

RIGHT_KNEE_X = 120 RIGHT_KNEE_Y = −140

Now that we have identified the coordinates for the stars and created named constants to

represent them, we can write pseudocode for the first part of the program, which

displays the stars:

Next, we will display the names of each star. The pseudocode for displaying these names

follows.

Next, we will display the lines that connect the stars. The pseudocode for displaying

these lines follows.

Now that we know the logical steps that the program must perform, we are ready to start

writing code. When the program runs, it first displays the stars, then it displays the names

of the stars, and then it displays the constellation lines.

In [23]: # This program draws the stars of the Orion constellation,
the names of the stars, and the constellation lines.
import turtle

Set the window size.
turtle.setup(500, 600)

Setup the turtle.
turtle.penup()
turtle.hideturtle()

Create named constants for the star coordinates.
LEFT_SHOULDER_X = -70
LEFT_SHOULDER_Y = 200

RIGHT_SHOULDER_X = 80
RIGHT_SHOULDER_Y = 180

LEFT_BELTSTAR_X = -40
LEFT_BELTSTAR_Y = -20

MIDDLE_BELTSTAR_X = 0
MIDDLE_BELTSTAR_Y = 0

RIGHT_BELTSTAR_X = 40
RIGHT_BELTSTAR_Y = 20

LEFT_KNEE_X = -90
LEFT_KNEE_Y = -180

RIGHT_KNEE_X = 120

RIGHT_KNEE_Y = -140

Draw the stars.
turtle.goto(LEFT_SHOULDER_X, LEFT_SHOULDER_Y) # Left shoulder
turtle.dot()
turtle.goto(RIGHT_SHOULDER_X, RIGHT_SHOULDER_Y) # Right shoulder
turtle.dot()
turtle.goto(LEFT_BELTSTAR_X, LEFT_BELTSTAR_Y) # Left belt star
turtle.dot()
turtle.goto(MIDDLE_BELTSTAR_X, MIDDLE_BELTSTAR_Y) # Middle belt star
turtle.dot()
turtle.goto(RIGHT_BELTSTAR_X, RIGHT_BELTSTAR_Y) # Right belt star
turtle.dot()
turtle.goto(LEFT_KNEE_X, LEFT_KNEE_Y) # Left knee
turtle.dot()
turtle.goto(RIGHT_KNEE_X, RIGHT_KNEE_Y) # Right knee
turtle.dot()

Display the star names
turtle.goto(LEFT_SHOULDER_X, LEFT_SHOULDER_Y) # Left shoulder
turtle.write('Betegeuse')
turtle.goto(RIGHT_SHOULDER_X, RIGHT_SHOULDER_Y) # Right shoulder
turtle.write('Meissa')
turtle.goto(LEFT_BELTSTAR_X, LEFT_BELTSTAR_Y) # Left belt star
turtle.write('Alnitak')
turtle.goto(MIDDLE_BELTSTAR_X, MIDDLE_BELTSTAR_Y) # Middle belt star
turtle.write('Alnilam')
turtle.goto(RIGHT_BELTSTAR_X, RIGHT_BELTSTAR_Y) # Right belt star
turtle.write('Mintaka')
turtle.goto(LEFT_KNEE_X, LEFT_KNEE_Y) # Left knee
turtle.write('Saiph')
turtle.goto(RIGHT_KNEE_X, RIGHT_KNEE_Y) # Right knee
turtle.write('Rigel')

Draw a line from the left shoulder to left belt star
turtle.goto(LEFT_SHOULDER_X, LEFT_SHOULDER_Y)
turtle.pendown()
turtle.goto(LEFT_BELTSTAR_X, LEFT_BELTSTAR_Y)
turtle.penup()

Draw a line from the right shoulder to right belt star
turtle.goto(RIGHT_SHOULDER_X, RIGHT_SHOULDER_Y)
turtle.pendown()
turtle.goto(RIGHT_BELTSTAR_X, RIGHT_BELTSTAR_Y)
turtle.penup()

Draw a line from the left belt star to middle belt star
turtle.goto(LEFT_BELTSTAR_X, LEFT_BELTSTAR_Y)
turtle.pendown()
turtle.goto(MIDDLE_BELTSTAR_X, MIDDLE_BELTSTAR_Y)
turtle.penup()

Draw a line from the middle belt star to right belt star
turtle.goto(MIDDLE_BELTSTAR_X, MIDDLE_BELTSTAR_Y)
turtle.pendown()
turtle.goto(RIGHT_BELTSTAR_X, RIGHT_BELTSTAR_Y)
turtle.penup()

Draw a line from the left belt star to left knee
turtle.goto(LEFT_BELTSTAR_X, LEFT_BELTSTAR_Y)
turtle.pendown()

turtle.goto(LEFT_KNEE_X, LEFT_KNEE_Y)
turtle.penup()

Draw a line from the right belt star to right knee
turtle.goto(RIGHT_BELTSTAR_X, RIGHT_BELTSTAR_Y)
turtle.pendown()
turtle.goto(RIGHT_KNEE_X, RIGHT_KNEE_Y)

Keep the window open. (Not necessary with IDLE.)
turtle.done()

Reference

Aforementioned contents are adapted from the following book:

Gaddis, T. Starting out with Python, 5th Ed., Pearson Education, 2022.

In []:

