1. Find the quotient

$$\frac{(6+2j)-(1+3j)}{(-1+j)-2}.$$

- 2. Let k be an integer. Show that
 - (a) $j^{4k} = 1$,
 - (b) $j^{4k+1} = j$,
 - (c) $j^{4k+2} = -1$,
 - (d) $j^{4k+3} = -j$.
- 3. Find
 - (a) j^7 ,
 - (b) j^{62} ,
 - (c) j^{-202} ,
 - (d) j^{-4321} .
- 4. Evaluate

$$3j^{11} + 6j^3 + \frac{8}{j^{20}} + j^{-1}.$$

- 5. Solve each of the following equations for z.
 - (a) jz = 4 zj,
 - (b) $\frac{z}{1-z} = 1 5j$,
 - (c) $(2-i)z + 8z^2 = 0$.
 - (d) $z^2 + 16 = 0$.
- 6. Let z = 3 2j. Plot the following points in the complex plane
 - (a) z,
 - (b) -z,
 - (c) \bar{z} ,
 - (d) $-\bar{z}$,
 - (e) $\frac{1}{2}$
- 7. Find $arg(1+\sqrt{3}j)$ and write $1+\sqrt{3}j$ in polar form.
- 8. Write the quotient

$$\frac{(1+j)}{(\sqrt{3}-j)}$$

in polar form.

- 9. Compute by using Euler's equation
 - (a) $(1+j)/(\sqrt{3}-j)$,
 - (b) $(1+j)^{24}$.

Hint: Euler's equation

$$e^{jy} = \cos y + j\sin y$$

10. Prove De Moivre's formula

$$(\cos \theta + j \sin \theta)^n = \cos n\theta + j \sin n\theta, \quad n = 1, 2, 3, \dots$$

for $(1+j)^{24}$.

- 11. Write $e^{-j\pi/4}$ in the form of a + bj.
- 12. Write $(1+j)^6$ in the polar form $re^{j\theta}$.
- 13. Solve

$$z^2 - (3 - 2j)z + 1 - 3j = 0.$$

14. Prove that the function

$$f(z) = e^z = e^x \cos y + je^x \sin y$$

is entire, and find its derivative.

15. Construct an analytic function whose real part is

$$u(x,y) = x^3 - 3xy^2 + y.$$