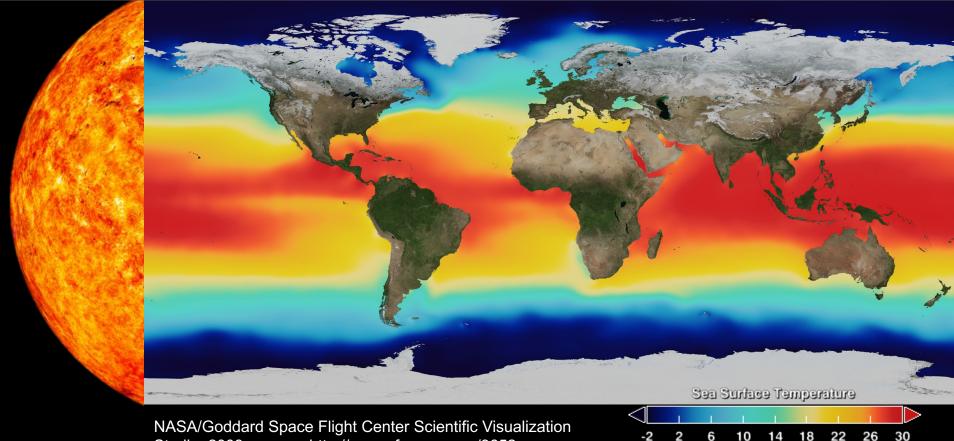
Renewable energy generation

Wind Energy Potential

Professor Arno Smets



Wind Energy Technology

The Principles

centigrade

Studio, 2009, source: http://svs.gsfc.nasa.gov/3652

The Principles

PRIMARY ENERGY POTENTIAL

$$E_{kin} = \frac{1}{2} * m * v^{2} \qquad [J] = \frac{1}{2} * [kg] * [m s^{-1}]$$

$$P_{wind} = \frac{E_{kin}}{t} = \frac{1}{2} * \dot{m} * v^{2} \qquad [W] = \frac{1}{2} * [kg s^{-1}] * [m s^{-1}]$$

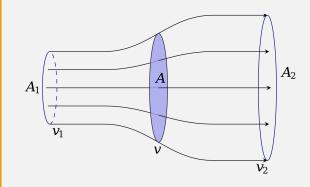
PRIMARY ENERGY POTENTIAL

$$\dot{m} = \rho * A * v$$
$$A = \pi * \left(\frac{D}{2}\right)^{2}$$
$$P_{wind} = \frac{1}{2} * \rho * A * v^{3}$$

$$[kg s^{-1}] = [kg m^{-3}] * [m^2] * [m s^{-1}]$$

$$[\mathrm{m}^2] = \pi * \left(\frac{[\mathrm{m}]}{2} \right)^2$$

$$[W] = \frac{1}{2} * [kg m^{-3}] * [m^{2}] * [m s^{-1}]^{3}$$



$Cp = \frac{Electricity\ produced\ by\ the\ turbine}{Total\ Energy\ Available\ in\ the\ Wind}$

Betz Limit

Maximum mechanical efficiency 59.3%

Seasonal & Daily Intermittency

Cut-off Maintenance Speed & Repair

Calculation Example

Given Information

Rotor Diameter D = 126 [m] & Power Coefficient Cp = 0.483 at $v = 10 \text{ [m s}^{-1}\text{]}$

Gather Useful Values

$$\rho = 1.23 \,[\text{kg m}^{-3}]$$
 $A_{rotor} = \pi * \left(\frac{1}{2} * 126\right)^2 = 12469 \,[\text{m}^2]$

 $v_{avg} = 10 \, [\mathrm{m \, s^{-1}}]$

Calculate Potential

 $P_{wind} = \frac{1}{2} * 1.23 [\text{kg m}^{-3}] * 12469 [\text{m}^{2}] * 10^{3} [\text{m}^{3} \text{ s}^{-3}] = 7.7 [\text{MW}]$

Calculation Example

Calculate Potential

$$P_{wind} = \frac{1}{2} * 1.23 [\text{kg m}^{-3}] * 12469 [\text{m}^{2}] * 10^{3} [\text{m}^{3} \text{ s}^{-3}] = 7.7 [\text{MW}]$$

Calculate Actual Power

$$P_{Real} = 7.7 \text{ [MW]} * 0.483 = 3.7 \text{ [MW]}$$

Calculation Example: Wind turbine in Denmark

Given Information

Nominal Capacity = 5.07 [GW] & Energy Yield = 14.13 [TWh]

Calculate Capacity Factor

$$Cf = 14.3$$
[TWh year⁻¹] * $1/_{8760}$ [year h⁻¹] * $1/_{5.07}$ [GW⁻¹] = 0.32

ADVANTAGES

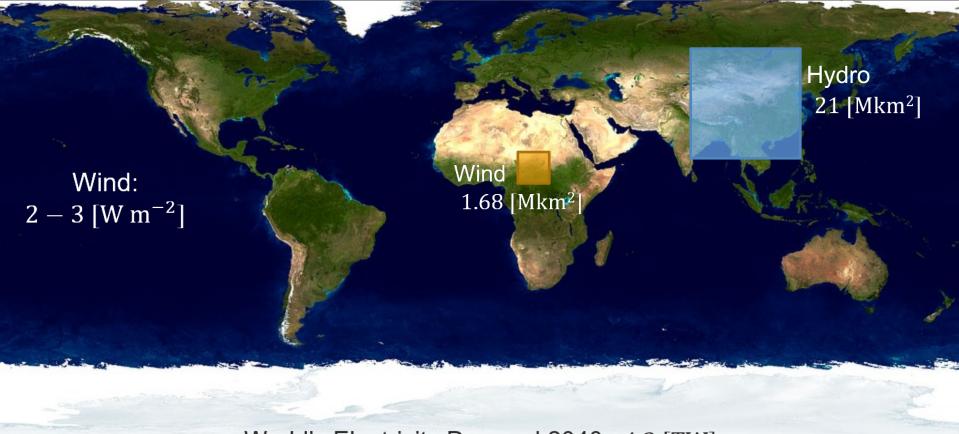
Large Energy Potential

CHALLENGES

- Low Capacity factor
- Endanger Grid Stability
- Good Wind Sites in Remote Locations

Global Perspective

Given Information


Global Energy Yield= 960 [TWh year⁻¹] Global Population = 7.5×10^9 [person]

Other Units

 $E_{GlobalYield} = 960 [TWh year^{-1}] * {}^{1}/_{7.5} * 10^{9} [person^{-1}] * {}^{1}/_{365} [year day^{-1}]$ $E_{GlobalYield} = 351 [Wh person^{-1}day^{-1}]$

Global Perspective

World's Electricity Demand 2040 : 4.2 [TW]

