
Files and Exceptions

2

Topics
• Introduction to File Input and Output

• Using Loops to Process Files

• Processing Records

• Exceptions

3

Introduction to File Input and Output (1 of 4)

• For program to retain data between the times it is run,
you must save the data

– Data is saved to a file, typically on computer disk
– Saved data can be retrieved and used at a later time

• “Writing data to”: saving data on a file

• Output file: a file that data is written to

Introduction to File Input and Output (2 of 4)

Figure 6-1 Writing data to a file

4

5

Introduction to File Input and Output (3 of 4)

• “Reading data from”: process of retrieving data from a
file

• Input file: a file from which data is read

• Three steps when a program uses a file
– Open the file
– Process the file
– Close the file

Introduction to File Input and Output (4 of 4)

Figure 6-2 Reading data from a file

6

7

Types of Files and File Access Methods
• In general, two types of files

– Text file: contains data that has been encoded as text
– Binary file: contains data that has not been converted

to text

• Two ways to access data stored in file
– Sequential access: file read sequentially from

beginning to end, can’t skip ahead
– Direct access: can jump directly to any piece of data in

the file

8

Filenames and File Objects (1 of 2)

• Filename extensions: short sequences of characters
that appear at the end of a filename preceded by a
period

– Extension indicates type of data stored in the file

• File object: object associated with a specific file
– Provides a way for a program to work with the file: file

object referenced by a variable

Filenames and File Objects (2 of 2)

Figure 6-4 A variable name references a file object that is associated with a file

9 10

Opening a File
•open function: used to open a file

– Creates a file object and associates it with a file on the
disk

– General format:
– file_object = open(filename, mode)

• Mode: string specifying how the file will be opened
– Example: reading only ('r'), writing ('w'), and

appending ('a')

11

Specifying the Location of a File
• If open function receives a filename that does not

contain a path, assumes that file is in same directory
as program

• If program is running and file is created, it is created in
the same directory as the program

– Can specify alternative path and file name in the open
function argument
▪ Prefix the path string literal with the letter r

12

Writing Data to a File
• Method: a function that belongs to an object

– Performs operations using that object

• File object’s write method used to write data to the
file

– Format: file_variable.write(string)

• File should be closed using file object close method
– Format: file_variable.close()

13

Reading Data From a File
•read method: file object method that reads entire file

contents into memory
– Only works if file has been opened for reading
– Contents returned as a string

•readline method: file object method that reads a
line from the file

– Line returned as a string, including '\n'

• Read position: marks the location of the next item to
be read from a file

14

Concatenating a Newline to and
Stripping it From a String
• In most cases, data items written to a file are values

referenced by variables
– Usually necessary to concatenate a '\n' to data

before writing it
▪ Carried out using the + operator in the argument of the
write method

• In many cases need to remove '\n' from string after
it is read from a file

– rstrip method: string method that strips specific
characters from end of the string

15

Appending Data to an Existing File
• When open file with 'w' mode, if the file already

exists it is overwritten

• To append data to a file use the 'a'mode
– If file exists, it is not erased, and if it does not exist it is

created
– Data is written to the file at the end of the current

contents

16

Writing and Reading Numeric Data
• Numbers must be converted to strings before they are

written to a file

•str function: converts value to string

• Number are read from a text file as strings
– Must be converted to numeric type in order to perform

mathematical operations
– Use int and float functions to convert string to

numeric value

17

Using Loops to Process Files (1 of 2)

• Files typically used to hold large amounts of data
– Loop typically involved in reading from and writing to a

file

• Often the number of items stored in file is unknown
– The readline method uses an empty string as a

sentinel when end of file is reached
▪ Can write a while loop with the condition
 while line != ''

Using Loops to Process Files (2 of 2)

Figure 6-17 General logic for detecting the end of a file

18

19

Using Python’s for Loop to Read Lines

• Python allows the programmer to write a for loop that
automatically reads lines in a file and stops when end
of file is reached

– Format: for line in file_object:
– statements
– The loop iterates once over each line in the file

20

Processing Records (1 of 2)

• Record: set of data that describes one item

• Field: single piece of data within a record

• Write record to sequential access file by writing the
fields one after the other

• Read record from sequential access file by reading
each field until record complete

21

Processing Records (2 of 2)

• When working with records, it is also important to be
able to:

– Add records
– Display records
– Search for a specific record
– Modify records
– Delete records

22

Exceptions (1 of 4)

• Exception: error that occurs while a program is
running

– Usually causes program to abruptly halt

• Traceback: error message that gives information
regarding line numbers that caused the exception

– Indicates the type of exception and brief description of
the error that caused exception to be raised

23

Exceptions (2 of 4)

• Many exceptions can be prevented by careful coding
– Example: input validation
– Usually involve a simple decision construct

• Some exceptions cannot be avoided by careful coding
– Examples

▪ Trying to convert non-numeric string to an integer
▪ Trying to open for reading a file that doesn’t exist

24

Exceptions (3 of 4)

• Exception handler: code that responds when
exceptions are raised and prevents program from
crashing

– In Python, written as try/except statement
▪ General format: try:

 statements
 except exceptionName:
 statements

▪ Try suite: statements that can potentially raise an
exception

▪ Handler: statements contained in except block

25

Exceptions (4 of 4)

• If statement in try suite raises exception:
– Exception specified in except clause:

▪ Handler immediately following except clause executes
▪ Continue program after try/except statement

– Other exceptions:
▪ Program halts with traceback error message

• If no exception is raised, handlers are skipped

26

Handling Multiple Exceptions
• Often code in try suite can throw more than one type

of exception
– Need to write except clause for each type of

exception that needs to be handled

• An except clause that does not list a specific
exception will handle any exception that is raised in
the try suite

– Should always be last in a series of except clauses

27

Displaying an Exception’s Default Error
Message
• Exception object: object created in memory when an

exception is thrown
– Usually contains default error message pertaining to

the exception
– Can assign the exception object to a variable in an
except clause
▪ Example: except ValueErroraserr:

– Can pass exception object variable to print function
to display the default error message

28

The else Clause
•try/except statement may include an optional
else clause, which appears after all the except
clauses

– Aligned with try and except clauses
– Syntax similar to else clause in decision structure
– Else suite: block of statements executed after

statements in try suite, only if no exceptions were
raised
▪ If exception was raised, the else suite is skipped

29

The finally Clause
•try/except statement may include an optional
finally clause, which appears after all the except
clauses

– Aligned with try and except clauses
– General format: finally:
– statements
– Finally suite: block of statements after the finally

clause
▪ Execute whether an exception occurs or not
▪ Purpose is to perform cleanup before exiting

30

What If an Exception Is Not Handled?
• Two ways for exception to go unhandled:

– No except clause specifying exception of the right type
– Exception raised outside a try suite

• In both cases, exception will cause the program to halt
– Python documentation provides information about

exceptions that can be raised by different functions

31

Summary
• This chapter covered:

– Types of files and file access methods
– Filenames and file objects
– Writing data to a file
– Reading data from a file and determining when the end

of the file is reached
– Processing records
– Exceptions, including:

▪ Traceback messages
▪ Handling exceptions

