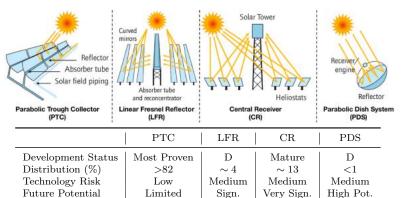


	PTC	LFR	CR	PDS
Land Requirement	Large	Medium	Medium	Small
Typical Shape	Rect.	Rect.	Circ. or Rect.	Rect.
Water Cooling (L/MWh)	3,000 or Dry	3,000 or Dry	1,000 or Dry	-
Air Cooling	Low to Good	Low	Good	Best
Storage with Molten Salt	CA	Р	CA	P

^{*}CA: Commercially Available, P: Possible, but not proven

Dr Kasım Zor


EEE407 - W6: Solar Thermal Electricity

Dr Kasım Zor

Department of Electrical and Electronic Engineering

EEE407 - W6: Solar Thermal Electricity

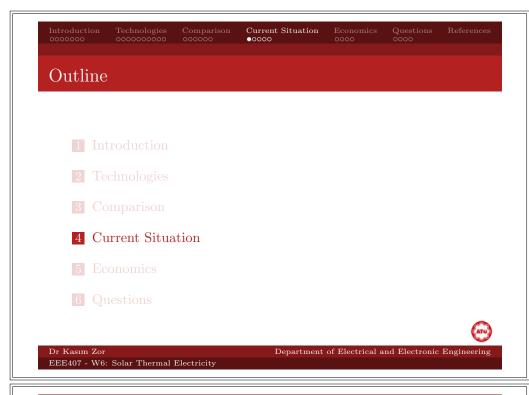
Comparison 000000 Comparison of CSP Technologies - Part 4 [15, 16]

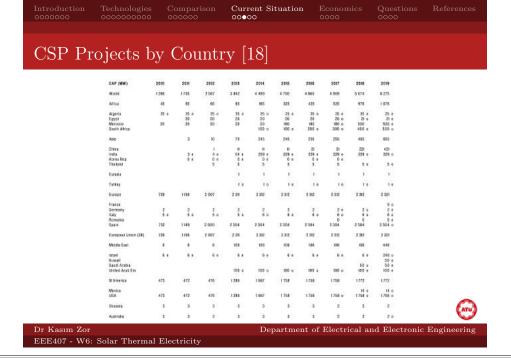
^{*}D: Demonstration

Department of Electrical and Electronic Engineering

Dr Kasım Zor EEE407 - W6: Solar Thermal Electricity

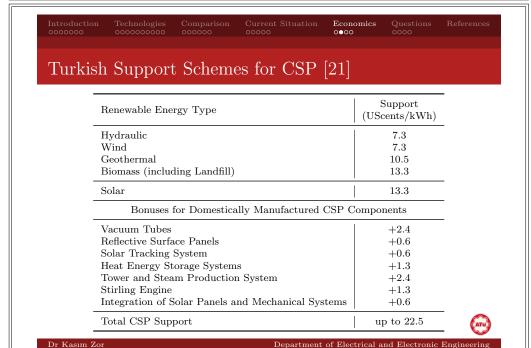
Comparison Comparison of CSP Technologies - Part 3 [15, 16] Absorber tube Solar field piping Linear Fresnel Reflector Parabolic Dish System Parabolic Trough Collector Central Receiver (PTC) (LFR) (PDS) PTC $_{
m LFR}$ CRPDS T_O (°C) 290 - 550250 - 560250 - 650800 25-28 (No TES) Annual C_F (%) 22 - 2455 (10h TES) 25 - 2829-43 (7h TES) Grid Stability Medium to High Medium High Low Steam Conditions (${}^{\circ}C$ /bar) 380-540/100 260/50540/100-160 *TES: Thermal Energy Storage

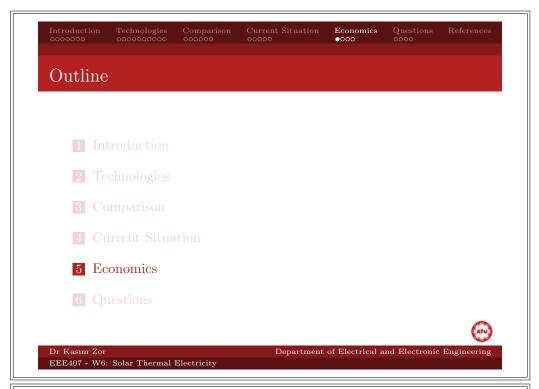


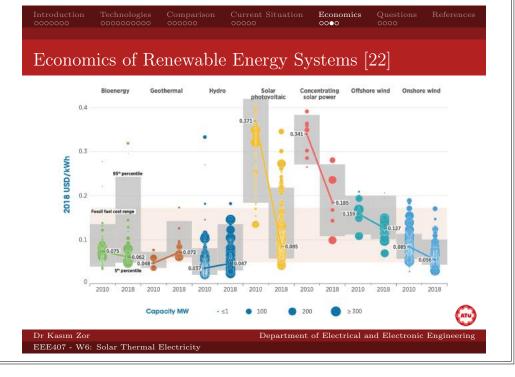

Department of Electrical and Electronic Engineering

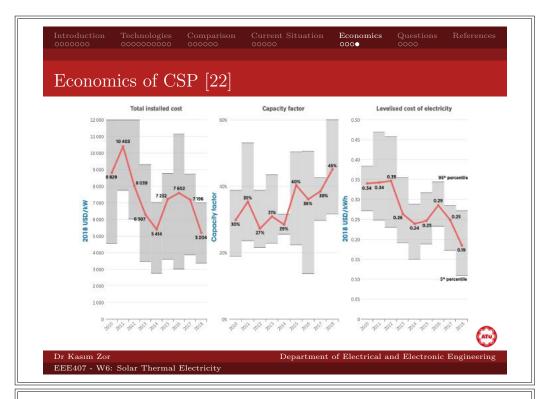
Parabolic Trough Collector (PTC)	and reconcentrator Linear Fresnel Reflector (LFR)	Fresnel Reflector Central Rece		Heliostats Reflector Parabolic Dish System (PDS)			
	PTC	LFR	CR	PDS			
LCOE (USD/kWh)	0.26-0.37 (No TES) 0.22-0.34 (with TES)	0.17-0.37 (6h TES)	0.20-0.29 (6-7.5h TES) 0.17-0.24 (12-15h TES)	-			
Plant Cost (USD/W	3.22	-	3.62	2.65			
O&M Cost (USD/kV	Vh) 0.012-0.020	Low	0.034	0.210			
*TES:Thermal Energy Storage, O&M: Operation and Maintenance							

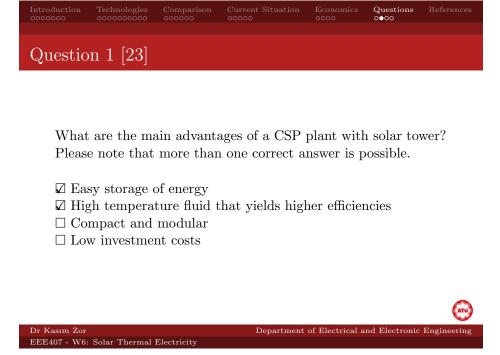
Dr Kasım Zor Department of Electrical and Electronic Engineering EEE407 - W6: Solar Thermal Electricity

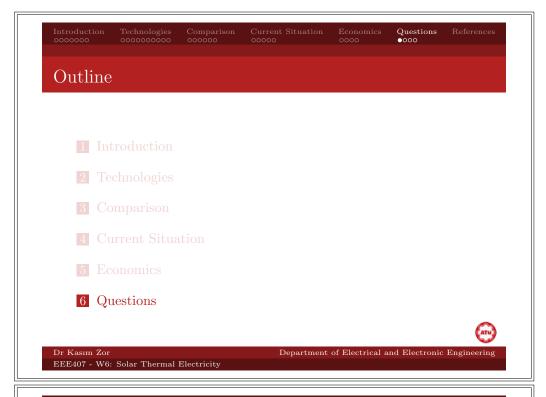











EEE407 - W6: Solar Thermal Electricity

The world electricity consumption is approximately 20,300 TWh per year. It is considered that the total electricity demand of the world is covered by installing a CSP plant in the Sahara desert, where the average solar insolation per day is 6.3 kWh/m². Assuming that the overall efficiency of the CSP plant is 20%, how much area in km² will be needed to cover the world electricity demand?

Solution:

$$A = \frac{20300 \text{ TW h}}{0.2 \times 6.3 \text{ kWh/m}^2 \text{day} \times 365 \text{ days}} = 44140 \text{ km}^2$$

Dr Kasım Zor Department of Electrical and Electronic Engineering EEE407 - W6: Solar Thermal Electricity

Introduction Technologies Comparison Current Situation Economics Questions Reference

Question 3 [24]

Calculate electrical energy generation unit cost of a 10 MW CSP plant with a unit equipment cost of 2,500 USD/kW, a power plant lifetime (ℓ) of 10 years, an efficiency of 30%, a land price of 10 USD/m², and a valuation ratio (ξ) of 6% per year by taking into account the followings:

- In layout planning of the plant,
 - 10 m² area is needed for deploying 1 m² heliostat,
 - Heliostats will be placed by leaving a margin of 10%,
 - For other equipment, an additional area will be reserved which corresponds to the half of the area occupied by the heliostats.
- Net power capacity of each heliostat is 0.285 kW/m².
- Average solar insolation per year is 2,200 kWh/m².

Hint: C_{year} and $C_{Investment}$ stand for the costs of annual electrical energy generation and investment respectively.

$$C_{year} = C_{Investment} \times \left[\frac{\xi \times (1+\xi)^{\ell}}{(1+\xi)^{\ell} - 1} \right]$$

Dr Kasım Zor

Department of Electrical and Electronic Engineering

EEE407 - W6: Solar Thermal Electricity

troduction Technologies Comparison Current Situation Economics Questions Reference

References II

- [10] US Department of Energy. Linear fresnel power plant illustration, 1996. URL https: //www.energy.gov/sites/prod/files/graphic_csp_linearfrisnel_1996_high.jpg.
- [11] 100pcRenewables. Australia's energy security 24/7 concentrated solar thermal power plus molten salt storage (csp+), 2011. URL https://youtu.be/LMWIgwvbrcM.
- [12] Thinglink. Gemasolar-en, 2018. URL https://www.thinglink.com/scene/1029691148475564033? buttonSource=viewLimits.
- [13] STORENERGY. Concentrated solar power plant with energy storage system, 2012. URL https://youtu.be/q6NLoo8k8DI.
- [14] Industry Queensland. Minesite benefits for new battery solar storage, 2020. URL https://www.i-q.net.au/main/minesite-benefits-for-new-battery-solar-storage.
- [15] Alfredo Peinado Gonzalo, Alberto Pliego Marugan, and Fausto Pedro Garcia Marquez. A review of the application performances of concentrated solar power systems. Applied Energy, 255:113893, 2019. ISSN 0306-2619. doi: https://doi.org/10.1016/j.apenergy.2019.113893.
- [16] Md Tasbirul Islam, Nazmul Huda, A.B. Abdullah, and R. Saidur. A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends. Renewable and Sustainable Energy Reviews, 91:987-1018, August 2018. doi: 10.1016/j.rser.2018.04.097. URL https://doi.org/10.1016/j.rser.2018.04.097.
- [17] National Renewable Energy Laboratory. Concentrating solar power projects by country, 2020. URL https://solarpaces.nrel.gov.

Dr Kasım Zor EEE407 - W6: Solar Thermal Electricity Department of Electrical and Electronic Engineering

roduction Technologies Comparison Current Sit

References I

- The European Solar Thermal Electricity Association. The voice of solar thermal electricity in europe and mena region, 2020. URL https://www.estelasolar.org.
- [2] IEA. Concentrating solar power generation in the sustainable development scenario, 2000-2030, 2020. URL https://www.iea.org/data-and-statistics/charts/ concentrating-solar-power-generation-in-the-sustainable-development-scenario-2000-2030.
- [3] Student Energy. Solar thermal 101, 2015. URL https://www.youtube.com/watch?v=FgjfJGfusdE.
- [4] SOLARGIS. Solar resource map direct normal irradiation, 2017. URL https://upload.wikimedia.org/wikipedia/commons/c/c7/Global_Map_of_Direct_Normal_Radiation_01.png.
- European Solar Thermal Electricity Association. Solar thermal electricity global outlook 2016, 2016. URL https://www.estelasolar.org/wp-content/uploads/2016/02/ GP-ESTELA-SolarPACES_Solar-Thermal-Electricity-Global-Outlook-2016_Full-report.pdf.
- [6] Deutsche CSP Association. Concentrated solar power, 2014. URL https://www.youtube.com/watch?v=CNZwToMDdPc.
- [7] Abengoa. Abengoa: solar energy for a sustainable world, 2014. URL https://youtu.be/ PcfWyumxbuo.
- [8] Peter Heller. The Performance of Concentrated Solar Power (CSP) Systems. Elsevier, 2017. URL https://doi.org/10.1016/c2014-0-03695-7.
- [9] Industrial Solar. Industrial solar fresnel collector video, 2016. URL https://youtu.be/ CMlmljBPImg.

 ${\rm Dr}~{\rm Kasım}~{\rm Zor}$

Department of Electrical and Electronic Engineering

EEE407 - W6: Solar Thermal Electricity

EEE407 - W6: Solar Thermal Electricity

References III

- [18] IRENA. Renewable capacity statistics 2020, 2020. URL https://www.irena.org/-/media/ Files/IRENA/Agency/Publication/2020/Mar/IRENA_RE_Capacity_Statistics_2020.pdf.
- [19] Mersin Toroslar Municipality. Csp, 2020. URL https://www.toroslar-bld.gov.tr/sayfa.php? sayfa=parkayrinti&id=8.
- [20] Alphan Manas. Greenway csp mersin plant, 2013. URL https://www.youtube.com/watch?v= K7MNSkX8R44.
- [21] Official Gazette of Turkey. Law on utilization of renewable energy sources for the purpose of generating electrical energy, 2005. URL https://www.mevzuat.gov.tr/MevzuatMetin/1.5.5346. pdf.
- [22] IRENA. Renewable power generation costs in 2018, 2018. URL https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/May/IRENA_ Renewable-Power-Generations-Costs-in-2018.pdf.
- [23] Arno H. M. Smets. Solar energy (delftx et3034x course on edx), 2020. URL https://www.edx.org/course/solar-energy-3.
- [24] Selim Ay. Economics of Electrical Energy. Birsen Publishing, 2008.

Dr Kasım Zor Department of Electrical and Electronic Engineering