
Decision Structures
and

Boolean Logic

1

Topics
• The if Statement

• The if-else Statement

• Comparing Strings

• Nested Decision Structures and the if-elif-else
Statement

• Logical Operators

• Boolean Variables

• Turtle Graphics: Determining the State of the Turtle

2

The if Statement (1 of 4)

• Control structure: logical design that controls order in
which set of statements execute

• Sequence structure: set of statements that execute in
the order they appear

• Decision structure: specific action(s) performed only if
a condition exists

– Also known as selection structure

3

The if Statement (2 of 4)

• In flowchart, diamond represents true/false condition
that must be tested

• Actions can be conditionally executed
– Performed only when a condition is true

• Single alternative decision structure: provides only
one alternative path of execution

– If condition is not true, exit the structure

4

The if Statement (3 of 4)

Figure 3-1 A simple decision structure

5

5 6

The if Statement (4 of 4)

• Python syntax:
if condition:

 Statement
 Statement

• First line known as the if clause
– Includes the keyword if followed by condition

▪ The condition can be true or false
▪ When the if statement executes, the condition is tested,

and if it is true the block statements are executed.
otherwise, block statements are skipped

7

• Boolean expression: expression tested by if statement
to determine if it is true or false

– Example: a > b
▪ true if a is greater than b; false otherwise

• Relational operator: determines whether a specific
relationship exists between two values

– Example: greater than (>)

Boolean Expressions and Relational
Operators (1 of 5)

8

Boolean Expressions and Relational
Operators (2 of 5)

• >= and <= operators test more than one relationship
– It is enough for one of the relationships to exist for the

expression to be true

• == operator determines whether the two operands are
equal to one another

– Do not confuse with assignment operator (=)

• != operator determines whether the two operands are
not equal

9

Boolean Expressions and Relational
Operators (3 of 5)

Expression Meaning
x > y Is x greater than y?
x < y Is x less than y?
x >= y Is x greater than or equal to y?
x <= y Is x less than or equal to y?
x == y Is x equal to y?
x != y Is x not equal to y?

Table 3-2 Boolean expressions using relational operators

10

Boolean Expressions and Relational
Operators (4 of 5)

• Using a Boolean expression with the > relational
operator

Figure 3-3 Example decision structure

11

Boolean Expressions and Relational
Operators (5 of 5)

• Any relational operator can be used in a decision
block

– Example: if balance == 0
– Example: if payment != balance

• It is possible to have a block inside another block
– Example: if statement inside a function
– Statements in inner block must be indented with

respect to the outer block

• Dual alternative decision structure: two possible paths
of execution

– One is taken if the condition is true, and the other if the
condition is false

– Syntax: if condition:
 statements
 else:
 other statements

– if clause and else clause must be aligned
– Statements must be consistently indented

12

The if-else Statement (1 of 3)

The if-else Statement (2 of 3)

Figure 3-5 A dual alternative decision structure

13

13

The if-else Statement (3 of 3)

Figure 3-6 Conditional execution in an if-else statement

14

14

15

Comparing Strings (1 of 2)

• Strings can be compared using the == and !=
operators

• String comparisons are case sensitive

• Strings can be compared using >, <, >=, and <=
– Compared character by character based on the ASCII

values for each character
– If shorter word is substring of longer word, longer word

is greater than shorter word

Comparing Strings (2 of 2)

Figure 3-9 Comparing each character in a string

16

16

17

Nested Decision Structures and the
if-elif-else Statement (1 of 3)

• A decision structure can be nested inside another
decision structure

– Commonly needed in programs
– Example:

▪ Determine if someone qualifies for a loan, they must
meet two conditions:

– Must earn at least $30,000/year
– Must have been employed for at least two years

▪ Check first condition, and if it is true, check second
condition

Nested Decision Structures and the
if-elif-else Statement (2 of 3)

Figure 3-12 A nested decision structure

18

18

19

Nested Decision Structures and the
if-elif-else Statement (3 of 3)

• Important to use proper indentation in a nested
decision structure

– Important for Python interpreter
– Makes code more readable for programmer
– Rules for writing nested if statements:

▪ else clause should align with matching if clause
▪ Statements in each block must be consistently indented

19 20

The if-elif-else Statement (1 of 3)

• if-elif-else statement: special version of a
decision structure

– Makes logic of nested decision structures simpler to
write
▪ Can include multiple elif statements

– Syntax: if condition_1:
 statement(s)
elif condition_2:
 statement(s)
elif condition_3:
 statement(s)
else
 statement(s)

Insert as many elif clauses
as necessary.

21

The if-elif-else Statement (2 of 3)

• Alignment used with if-elif-else statement:
– if, elif, and else clauses are all aligned
– Conditionally executed blocks are consistently indented

• if-elif-else statement is never required, but logic
easier to follow

– Can be accomplished by nested if-else
▪ Code can become complex, and indentation can cause

problematic long lines

The if-elif-else Statement (3 of 3)

Figure 3-15 Nested decision structure to determine a grade

22

22

23

Logical Operators
• Logical operators: operators that can be used to

create complex Boolean expressions
– and operator and or operator: binary operators,

connect two Boolean expressions into a compound
Boolean expression

– not operator: unary operator, reverses the truth of its
Boolean operand

24

The and Operator

• Takes two Boolean expressions as operands
– Creates compound Boolean expression that is true

only when both sub expressions are true
– Can be used to simplify nested decision structures

• Truth table for the and operator

 Value of the
Expression

Expression

falsefalse and false
falsefalse and true
falsetrue and false
truetrue and true

25

The or Operator

• Takes two Boolean expressions as operands
– Creates compound Boolean expression that is true

when either of the sub expressions is true
– Can be used to simplify nested decision structures

• Truth table for the or operator

 Value of the
Expression

Expression

falsefalse or false
truefalse or true
truetrue or false
truetrue or true

26

Short-Circuit Evaluation
• Short circuit evaluation: deciding the value of a

compound Boolean expression after evaluating only
one sub expression

– Performed by the or and and operators
▪ For or operator: If left operand is true, compound

expression is true. Otherwise, evaluate right operand
▪ For and operator: If left operand is false, compound

expression is false. Otherwise, evaluate right operand

27

The not Operator

• Takes one Boolean expressions as operand and
reverses its logical value

– Sometimes it may be necessary to place parentheses
around an expression to clarify to what you are
applying the not operator

• Truth table for the not operator

Value of the ExpressionExpression

falsetrue
truefalse

28

• To determine whether a numeric value is within a
specific range of values, use and

– Example: x >= 10 and x <= 20

• To determine whether a numeric value is outside of a
specific range of values, use or

– Example: x < 10 or x > 20

Checking Numeric Ranges with Logical
Operators

29

Boolean Variables
• Boolean variable: references one of two values, True

or False
– Represented by bool data type

• Commonly used as flags
– Flag: variable that signals when some condition exists

in a program
▪ Flag set to False ! condition does not exist
▪ Flag set to True ! condition exists

30

• The turtle.xcor() and turtle.ycor() functions
return the turtle's X and Y coordinates

• Examples of calling these functions in an if
statement:

if turtle.xcor() > 100 and turtle.xcor() < 200:
 turtle.goto(0, 0)

if turtle.ycor() < 0:
 turtle.goto(0, 0)

Turtle Graphics: Determining the State
of the Turtle (1 of 9)

31

Turtle Graphics: Determining the State
of the Turtle (2 of 9)

• The turtle.heading() function returns the turtle's
heading. (By default, the heading is returned in degrees.)

• Example of calling the function in an if statement:

if turtle.heading() >= 90 and turtle.heading() <= 270:
 turtle.setheading(180)

32

Turtle Graphics: Determining the State
of the Turtle (3 of 9)

• The turtle.isdown() function returns True if the pen
is down, or False otherwise.

• Example of calling the function in an if statement:

if turtle.isdown():
 turtle.penup()

if not(turtle.isdown()):
 turtle.pendown()

33

Turtle Graphics: Determining the State
of the Turtle (4 of 9)

• The turtle.isvisible() function returns True if the
turtle is visible, or False otherwise.

• Example of calling the function in an if statement:

if turtle.isvisible():
 turtle.hideturtle()

34

Turtle Graphics: Determining the State
of the Turtle (5 of 9)

• When you call turtle.pencolor() without passing an
argument, the function returns the pen's current color as a
string. Example of calling the function in an if statement:

• When you call turtle.fillcolor() without passing
an argument, the function returns the current fill color as a
string. Example of calling the function in an if statement:

if turtle.pencolor() == 'red':
 turtle.pencolor('blue')

if turtle.fillcolor() ==
'blue':
 turtle.fillcolor('white')

35

Turtle Graphics: Determining the State
of the Turtle (6 of 9)

if turtle.bgcolor() == 'white':
 turtle.bgcolor('gray')

• When you call turtle.bgcolor() without passing an
argument, the function returns the current background
color as a string. Example of calling the function in an
if statement:

36

Turtle Graphics: Determining the State
of the Turtle (7 of 9)

• When you call turtle.pensize() without passing an
argument, the function returns the pen's current size as a
string. Example of calling the function in an if statement:

if turtle.pensize() < 3:
 turtle.pensize(3)

37

Turtle Graphics: Determining the State
of the Turtle (8 of 9)

• When you call turtle.speed()without passing an
argument, the function returns the current animation
speed. Example of calling the function in an if statement:

if turtle.speed() > 0:
 turtle.speed(0)

38

Turtle Graphics: Determining the State
of the Turtle (9 of 9)

• See In the Spotlight: The Hit the Target Game in your textbook for numerous examples
of determining the state of the turtle.

39

Summary
• This chapter covered:

– Decision structures, including:
▪ Single alternative decision structures
▪ Dual alternative decision structures
▪ Nested decision structures

– Relational operators and logical operators as used in
creating Boolean expressions

– String comparison as used in creating Boolean
expressions

– Boolean variables
– Determining the state of the turtle in Turtle Graphics

