
1

Dictionaries and Sets

2

Topics
• Dictionaries

• Sets

• Serializing Objects

3

Dictionaries
• Dictionary: object that stores a collection of data

– Each element consists of a key and a value
▪ Often referred to as mapping of key to value
▪ Key must be an immutable object

– To retrieve a specific value, use the key associated
with it

– Format for creating a dictionary
 dictionary =
 {key1:val1, key2:val2}

4

Retrieving a Value from a Dictionary
• Elements in dictionary are unsorted

• General format for retrieving value from dictionary:
dictionary[key]

– If key in the dictionary, associated value is returned,
otherwise, KeyError exception is raised

• Test whether a key is in a dictionary using the in and
not in operators

– Helps prevent KeyError exceptions

5

Adding Elements to an Existing
Dictionary
• Dictionaries are mutable objects

• To add a new key-value pair:

 dictionary[key] = value
– If key exists in the dictionary, the value associated with

it will be changed

6

Deleting Elements From an Existing
Dictionary
• To delete a key-value pair:

del dictionary[key]
– If key is not in the dictionary, KeyError exception is

raised

7

Getting the Number of Elements and
Mixing Data Types
•len function: used to obtain number of elements in a

dictionary

• Keys must be immutable objects, but associated
values can be any type of object

– One dictionary can include keys of several different
immutable types

• Values stored in a single dictionary can be of different
types

8

Creating an Empty Dictionary and Using
for Loop to Iterate Over a Dictionary

• To create an empty dictionary:
– Use {}
– Use built-in function dict()
– Elements can be added to the dictionary as program

executes

• Use a for loop to iterate over a dictionary
– General format: for key in dictionary:

9

Some Dictionary Methods (1 of 5)

•clear method: deletes all the elements in a
dictionary, leaving it empty

– Format: dictionary.clear()

•get method: gets a value associated with specified
key from the dictionary

– Format: dictionary.get(key, default)
▪ default is returned if key is not found

– Alternative to [] operator
▪ Cannot raise KeyError exception

10

Some Dictionary Methods (2 of 5)

•items method: returns all the dictionaries keys and
associated values

– Format: dictionary.items()
– Returned as a dictionary view

▪ Each element in dictionary view is a tuple which contains
a key and its associated value

▪ Use a for loop to iterate over the tuples in the sequence
– Can use a variable which receives a tuple, or can use two

variables which receive key and value

11

Some Dictionary Methods (3 of 5)

•keys method: returns all the dictionaries keys as a
sequence

– Format: dictionary.keys()

•pop method: returns value associated with specified
key and removes that key-value pair from the
dictionary

– Format: dictionary.pop(key, default)
▪ default is returned if key is not found

12

Some Dictionary Methods (4 of 5)

•popitem method: Returns, as a tuple, the key-value
pair that was last added to the dictionary. The method
also removes the key-value pair from the dictionary.

– Format: dictionary.popitem()
– Key-value pair returned as a tuple

•values method: returns all the dictionaries values as
a sequence

– Format: dictionary.values()
– Use a for loop to iterate over the values

13

Some Dictionary Methods (5 of 5)

Table 9-1 Some of the dictionary methods

Method Description
Clear Clears the contents of a dictionary.

get Gets the value associated with a specified key. If the key is not found, the method does
not raise an exception. Instead, it returns a default value.

items Returns all the keys in a dictionary and their associated values as a sequence of
tuples.

keys Returns all the keys in a dictionary as a sequence of tuples.

pop Returns the value associated with a specified key and removes that key-value pair
from the dictionary. If the key is not found, the method returns a default value.

popitem Returns, as a tuple, the key-value pair that was last added to the dictionary. The
method also removes the key-value pair from the dictionary.

values Returns all the values in the dictionary as a sequence of tuples.

14

Dictionary Comprehensions (1 of 6)

• Dictionary comprehension: an expression that reads a
sequence of input elements and uses those input
elements to produce a dictionary

15

Dictionary Comprehensions (2 of 6)

• Example: create a dictionary in which the keys are the
integers 1 through 4 and the values are the squares of the
keys

>>> numbers = [1, 2, 3, 4]
>>> squares = {}
>>> for item in numbers:
... squares[item] = item**2
...
>>> squares
{1: 1, 2: 4, 3: 9, 4: 16}
>>>

>>> squares = {item:item**2 for item in
numbers}
>>> squares
{1: 1, 2: 4, 3: 9, 4: 16}
>>>

Using a for
loop

Using a
dictionary

comprehension

16

Dictionary Comprehensions (3 of 6)

squares = {item:item**2 for item in numbers}

Iteration ExpressionResult Expression

• The iteration expression iterates over the elements of numbers
• Each time it iterates, the target variable item is assigned the value

of an element
• At the end of each iteration, an element containing item as the key

and item**2 as the value is added to the new dictionary

17

Dictionary Comprehensions (4 of 6)

• Example: You have an existing list of strings. Create a
dictionary in which the keys are the stings in the list,
and the values are the lengths of the strings

>>> names = ['Jeremy', 'Kate', 'Peg']
>>> str_lengths = {item:len(item) for item in names}
>>> str_lengths
{'Jeremy': 6, 'Kate': 4, 'Peg': 3}
>>>

18

Dictionary Comprehensions (5 of 6)

• Example: making a copy of a dictionary

>>> dict1 = {'A':1, 'B':2, 'C':3}
>>> dict2 = {k:v for k,v in dict1.items()}
>>> dict2
{'A': 1, 'B': 2, 'C': 3}
>>>

19

Dictionary Comprehensions (6 of 6)

• You can use an if clause in a dictionary
comprehension to select only certain elements of the
input sequence

– Example: A dictionary contains cities and their populations
as key-value pairs. Select only the cities with a population
greater than 2 million

>>> populations = {'New York': 8398748, 'Los Angeles': 3990456,
... 'Chicago': 2705994, 'Houston': 2325502,
... 'Phoenix': 1660272, 'Philadelphia': 1584138}
>>> largest = {k:v for k,v in populations.items() if v > 2000000}
>>> largest
{'New York': 8398748, 'Los Angeles': 3990456, 'Chicago': 2705994,
'Houston': 2325502}
>>>

20

Sets
• Set: object that stores a collection of data in same way

as mathematical set
– All items must be unique
– Set is unordered
– Elements can be of different data types

21

Creating a Set
•set function: used to create a set

– For empty set, call set()
– For non-empty set, call set(argument) where
argument is an object that contains iterable elements
▪ e.g., argument can be a list, string, or tuple
▪ If argument is a string, each character becomes a set

element
– For set of strings, pass them to the function as a list

▪ If argument contains duplicates, only one of the
duplicates will appear in the set

22

Getting the Number of and Adding
Elements
•len function: returns the number of elements in the

set

• Sets are mutable objects

•add method: adds an element to a set

•update method: adds a group of elements to a set
– Argument must be a sequence containing iterable

elements, and each of the elements is added to the set

23

Deleting Elements From a Set
•remove and discard methods: remove the specified

item from the set
– The item that should be removed is passed to both

methods as an argument
– Behave differently when the specified item is not found

in the set
▪ remove method raises a KeyError exception
▪ discard method does not raise an exception

• clear method: clears all the elements of the set

24

Using the for Loop, in, and not in
Operators With a Set
• A for loop can be used to iterate over elements in a

set
– General format: for item in set:
– The loop iterates once for each element in the set

• The in operator can be used to test whether a value
exists in a set

– Similarly, the not in operator can be used to test
whether a value does not exist in a set

25

Finding the Union of Sets
• Union of two sets: a set that contains all the elements

of both sets

• To find the union of two sets:
– Use the union method

▪ Format: set1.union(set2)
– Use the | operator

▪ Format: set1 | set2
– Both techniques return a new set which contains the

union of both sets

26

Finding the Intersection of Sets
• Intersection of two sets: a set that contains only the

elements found in both sets

• To find the intersection of two sets:
– Use the intersection method

▪ Format: set1.intersection(set2)
– Use the & operator

▪ Format: set1 & set2
– Both techniques return a new set which contains the

intersection of both sets

27

Finding the Difference of Sets
• Difference of two sets: a set that contains the

elements that appear in the first set but do not appear
in the second set

• To find the difference of two sets:
– Use the difference method

▪ Format: set1.difference(set2)
– Use the - operator

▪ Format: set1 - set2

28

Finding the Symmetric Difference of
Sets
• Symmetric difference of two sets: a set that contains

the elements that are not shared by the two sets

• To find the symmetric difference of two sets:
– Use the symmetric_difference method

▪ Format: set1.symmetric_difference(set2)
– Use the ^ operator

▪ Format: set1 ^ set2

29

Finding Subsets and Supersets (1 of 2)

• Set A is subset of set B if all the elements in set A are
included in set B

• To determine whether set A is subset of set B
– Use the issubset method

▪ Format: setA.issubset(setB)
– Use the <= operator

▪ Format: setA <= setB

30

Finding Subsets and Supersets (2 of 2)

• Set A is superset of set B if it contains all the elements
of set B

• To determine whether set A is superset of set B
– Use the issuperset method

▪ Format: setA.issuperset(setB)
– Use the >= operator

▪ Format: setA >= setB

31

Set Comprehensions (1 of 4)

• Set comprehension: a concise expression that creates
a new set by iterating over the elements of a
sequence

• Set comprehensions are written just like list
comprehensions, except that a set comprehension is
enclosed in curly braces ({}) instead of brackets ([])

32

Set Comprehensions (2 of 4)

• Example: making a copy of a set

>>> set1 = set([1, 2, 3, 4, 5])
>>> set2 = {item for item in set1}
>>> set2
{1, 2, 3, 4, 5}
>>>

33

Set Comprehensions (3 of 4)

• Example: creating a set that contains the squares of
the numbers stored in another set

>>> set1 = set([1, 2, 3, 4, 5])
>>> set2 = {item**2 for item in set1}
>>> set2
{1, 4, 9, 16, 25}
>>>

34

Set Comprehensions (4 of 4)

• Example: copying the numbers in a set that are less
than 10

>>> set1 = set([1, 20, 2, 40, 3, 50])
>>> set2 = {item for item in set1 if item < 10}
>>> set2
{1, 2, 3}
>>>

35

Serializing Objects (1 of 3)

• Serialize an object: convert the object to a stream of
bytes that can easily be stored in a file

• Pickling: serializing an object

36

Serializing Objects (2 of 3)

• To pickle an object:
– Import the pickle module
– Open a file for binary writing
– Call the pickle.dump function

▪ Format: pickle.dump(object, file)
– Close the file

• You can pickle multiple objects to one file prior to
closing the file

37

Serializing Objects (3 of 3)

• Unpickling: retrieving pickled object

• To unpickle an object:
– Import the pickle module
– Open a file for binary writing
– Call the pickle.load function

▪ Format: pickle.load(file)
– Close the file

• You can unpickle multiple objects from the file

38

Summary (1 of 2)

• This chapter covered:
– Dictionaries, including:

▪ Creating dictionaries
▪ Inserting, retrieving, adding, and deleting key-value pairs
▪ for loops and in and not in operators
▪ Dictionary methods

39

Summary (2 of 2)

• This chapter covered (cont’d):
– Sets:

▪ Creating sets
▪ Adding elements to and removing elements from sets
▪ Finding set union, intersection, difference and symmetric

difference
▪ Finding subsets and supersets

– Serializing objects
▪ Pickling and unpickling objects

