
© 2020 Renesas Electronics Corporation. All rights reserved.

EMBEDDED SYSTEMS
BASED ON CORTEX-M4 AND THE RENESAS
SYNERGY PLATFORM

2020
PROF. DOUGLAS RENAUX, PHD
PROF. ROBSON LINHARES, DR.
UTFPR / ESYSTECH

RENESAS ELECTRONICS CORPORATION

© 2020 Renesas Electronics Corporation. All rights reserved. 385

 13 – CONCURRENT PROGRAMMING
▪ Tasks

▪ Processes vs Threads

▪ Context Switching

▪ Scheduling

▪ Inter-task Communications and Synchronization

▪ Caveats

© 2020 Renesas Electronics Corporation. All rights reserved. 386

UNDERSTANDING CONCURRENCY
▪ Consider a single-person company. Suppose you could specify his activities by writing a program-like script. Wouldn’t it be

very complex? Full of interleaved chores that would be hard to specify in a single script?

source: pixabay.com

© 2020 Renesas Electronics Corporation. All rights reserved. 387

UNDERSTANDING CONCURRENCY
Now, consider a simple embedded system with:

▪ 3 serial ports operating at 115 Kbps (aprox. 1 char every 87us);

▪ USB, requiring processing every 125 us for packets with about 1KBytes;

▪ IHM: touch screen plus LCD;

▪ activities implemented in SW:

▪ A1: every 2 ms – process data from the touch screen;

▪ A2: every 7 ms – process USB data;

▪ A3: every 500 us – manage the USB protocol;

▪ A4: every 100 ms – manage the menu system.

Wouldn’t it be very hard to program a single sequential code to execute all these tasks, even more if several
possible interleavings could occur?

© 2020 Renesas Electronics Corporation. All rights reserved. 388

UNDERSTANDING CONCURRENCY
As embedded systems increase constantly in complexity and code size, this complexity can be better managed if a single

program (responsible for all activities) could be divided into many smaller programs, each one responsible for a single

activity. Each one of these small programs is called a task. The multiple tasks that compose a concurrent program execute

concurrently and cooperate among them to achieve the desired functionality.

It is TEAM WORK!!

© 2020 Renesas Electronics Corporation. All rights reserved. 389

UNDERSTANDING CONCURRENCY
How can multiple tasks execute concurrently on a single processor?

Answer: each task will execute on a “virtual processor”. The combined performance of all virtual processors is about the

same as the performance of the actual processor, as the virtual processor share the physical resources: processor, memory

and peripherals.

© 2020 Renesas Electronics Corporation. All rights reserved. 390

UNDERSTANDING CONCURRENCY
The sharing of the actual hardware (processor, memory, peripherals) is managed by an embedded operating system (or

RTOS - Real-Time Operating System).

Virtual
Processor 1 VP2 … VPn

RTOS

HW

© 2020 Renesas Electronics Corporation. All rights reserved. 391

UNDERSTANDING CONCURRENCY
The storage regions of a single sequential program (e.g a C-program) are:

Flash

CODE
(.text)

(.const)

RAM
HEAP

STACK

DATA
(.data)
(.bss)

CPU

Registers

© 2020 Renesas Electronics Corporation. All rights reserved. 392

MULTITHREADING
For simplicity and to reduce the usage of computational resources, RTOS for MCUs typically rely on multithreading to

implement concurrency.

A thread is a program segment that executes concurrently to other threads (program segments). Hence, each thread is

characterized by its own PC (program counter), its own set of processor registers and its own stack, while sharing the other

memory regions with the other threads.

On MCUs, each task (abstract concept) is implement by one thread.

© 2020 Renesas Electronics Corporation. All rights reserved. 393

MULTITHREADING
Some sections of RAM (shown in red) are of exclusive use of a
thread. These sections hold the stacks and a copy of the set of
processor registers.
Other sections of Memory (shown in blue) are shared among all
threads. While this sharing provides efficient access to shared
data, it does not provide means of protection among threads.

Flash
CODE
(.text)

(.const)

RAM

HEAP

DATA
(.data)
(.bss)

CPU
Registers

RAM

STACK 1

Regs 1

RAM

STACK n

Regs n…

Shared

Exclusive
use

notation

© 2020 Renesas Electronics Corporation. All rights reserved. 394

MULTITHREADING
Differences between threads and processes:

▪ On processors with MMUs (Memory Management Units), it is possible to create an exclusive addressing space for each

task. This type of implementation is called process. In a process, it is possible to host several threads, hence, there are

single-threaded processes and multi-threaded processes.

▪ On processors without MMUs, all tasks share the available memory. This type of implementation is called thread.

▪ A task is a logical concept that can be implemented by a process or by a thread.

© 2020 Renesas Electronics Corporation. All rights reserved. 395

MULTITHREADING – CONCEPTS
Context Switch

How do multiple threads share a single processor?

▪ An RTOS manages the physical resources (processor, memory, peripherals).

▪ A context switch consists of saving the state of the processor when one thread is executing and restoring the state of

another thread:

1. Task A is executing;

2. All CPU registers are saved onto the stack of Task A;

3. The RTOS executes and selects another task to execute: Task B. The criteria for selecting another task is defined by

the scheduling policy;

4. The state of task B is restored from Task B stack onto the CPU registers. Execution proceeds on Task B’s code and

using Task B’s stack.

© 2020 Renesas Electronics Corporation. All rights reserved. 396

MULTITHREADING – CONCEPTS
Preemptive vs Non-Preemptive RTOS

▪ A preemptive RTOS has control of the processor during all times. It releases the processor to a thread and at any time

may get back the control of the processor to releases to another thread. This is the case when a higher priority thread

becomes ready to run.

▪ When a non-preemptive RTOS releases control to a thread, it is unable to regain control of the processor until that thread,

voluntarily, releases the processor back to the RTOS.

© 2020 Renesas Electronics Corporation. All rights reserved. 397

MULTITHREADING – CONCEPTS
Task Priority

▪ Each task is created with a defined priority level, which
typically can be changed during execution. When a task of
higher priority than the running task becomes ready, a
priority-based preemptive scheduler will interrupt the
running task and context switch to the higher priority task.
Once this task releases the processor, the preempted task
can resume its execution.

source: ARM, CMSIS-RTOS specs
http://www.keil.com/pack/doc/CMSIS_Dev/RTOS2/html/theory_of_operation.html

© 2020 Renesas Electronics Corporation. All rights reserved. 398

MULTITHREADING – CAVEATS
If all tasks in a concurrent program are independent, then the only control that is needed is the allocation of the processor

to the tasks (scheduling).

However, if tasks share resources (memory regions or peripherals) then an adequate control of resource sharing must be

performed to guarantee exclusive access to shared resources and to avoid deadlocks and priority inversion.

© 2020 Renesas Electronics Corporation. All rights reserved.

Renesas.com

