
© 2020 Renesas Electronics Corporation. All rights reserved.

EMBEDDED SYSTEMS
BASED ON CORTEX-M4 AND THE RENESAS
SYNERGY PLATFORM

2020
PROF. DOUGLAS RENAUX, PHD
PROF. ROBSON LINHARES, DR.
UTFPR / ESYSTECH

RENESAS ELECTRONICS CORPORATION

© 2020 Renesas Electronics Corporation. All rights reserved. 319

 10 – USB
▪ Introduction

▪ Block Diagram

▪ Registers

▪ SW Stack

© 2020 Renesas Electronics Corporation. All rights reserved. 320

10.1 – INTRODUCTION
USB is an acronym for Universal Serial Bus. It has been proposed by a consortium of companies, such as Microsoft, Intel,

IBM, Compaq and NEC and is designed to support a wide range of applications that require communication with distinct

characteristics (real-time, high or low bandwidth, with or without message delivery guarantee etc.).

Current specification is 3.2 (Sep, 2017).

© 2020 Renesas Electronics Corporation. All rights reserved. 321

10.1 – INTRODUCTION
Examples of devices that make use of USB:

▪ Printers

▪ Cameras interface for photo and video upload

▪ Smartphones interface for battery charging and file transfer

▪ Human Interface Devices � keyboard, mouse etc.

▪ Development electronic boards � debug interface (JTAG emulation)

▪ Game joysticks

▪ …

© 2020 Renesas Electronics Corporation. All rights reserved. 322

10.1 – INTRODUCTION
Characteristics of USB:

▪ Four (or five)-wire serial bus with single master (host) and up to 127 slaves (devices);

▪ Exception USB On-The-Go (OTG) allows negotiation between two devices (point to point) to be a temporary host;

▪ Example of OTG use: a camera device connected to a printer device to print photos;

▪ Defines low speed (1.5 Mbps), full speed (12 Mbps) and high speed (up to 5 Gbps at version 3.0) bandwidth

▪ Rem: USB 3.0 uses a 9-pin connector (USB-A 3.0 connector) or a 24-pin USB-C connector.

© 2020 Renesas Electronics Corporation. All rights reserved. 323

10.1 – INTRODUCTION
▪ Four types of data transfers meet the requirements of different communication types

▪ Device class identification by the host via enumeration protocol allows plug-and-play and hot swap capabilities, as well

as instantiation of the proper class driver software by the host

▪ Bus power capabilities some USB devices do not need an extra power source

▪ USB host is able to detect overcurrent conditions, so that power can be removed from the device causing the problem

without affecting the other devices already connected

© 2020 Renesas Electronics Corporation. All rights reserved. 324

USB TOPOLOGY
▪ USB Host Controller is the master and generates

transactions (via Root Hub).

▪ Each Hub is physically connected (by wire) to a Node or

another Hub.

▪ Nodes are slaves which perform the functions also

known as Devices.

▪ Each level defines a tier maximum of 7 as USB 2.0

Specification.

▪ Nodes can be inserted or removed when necessary

upon insertion, the enumeration process is executed to

identify the device class and configure it.

USB Host
Controller

Root Hub

Node

Node Node

Node Node

Hub

Hub

Tier 1

Tier 2

Tier 3

Tier 4

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. 325

USB PHYSICAL INTERFACE
USB 1.1 and 2.0 4 shielded wires.

▪ 2 wires for data differential

▪ 2 wires for power (5 Vdc and GND)

Type A host.

Type B device.

Mini and Micro variations use the same electrical interface in

smaller form factors.

OTG extra pin to identify the role of the device (A or B).

The receptacle is called Micro-AB and accepts both Micro-A

and Micro-B connectors.

USB 3.0 5 extra wires.

Source: By Milos.bmx (Own work) [CC BY-SA 3.0 (https://
creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons
https://commons.wikimedia.org/wiki/File%3AUSB3.0_connectors.svg

USB-C

CC0
https://commons.wikimedia.org/wiki/File:USB_Type-C_icon.svg

https://commons.wikimedia.org/wiki/File:USB_Type-C_icon.svg
https://commons.wikimedia.org/wiki/File:USB_Type-C_icon.svg
https://commons.wikimedia.org/wiki/File:USB_Type-C_icon.svg
https://commons.wikimedia.org/wiki/File:USB_Type-C_icon.svg
https://commons.wikimedia.org/wiki/File:USB_Type-C_icon.svg

© 2020 Renesas Electronics Corporation. All rights reserved. 326

USB LOGICAL VIEW
Communication flows are performed
via pipes � composed of
endpoints unidirectional data
paths.
Endpoint / pipe bundles form an
interface a view to the function /
device behavior as it is exposed to
the host.
The host side instantiates a class
driver during device enumeration
manages the interfaces and provides
an API to the app level.
Default pipe is bidirectional (endpoint
0 in both directions) and is used for
device configuration.

App software

Class driver

USB driver

USB Host Ctrl
driver (HCD)

USB
Host
Ctrl

SIE

USB
System
SW

Class driver API

USB transfers

USB
HW Transactions

(USB frames)

Buffers

Function SW
(Device)

USB Device Ctrl
Driver (DCD)

USB
Dev
Ctrl

SIE

USB
System
SW

USB transfers

USB
HW Transactions

(USB frames)

Buffers

Interface 1 (pipe bundle)

Interface N (pipe bundle)

Default pipe (endpoint 0)

USB wire

Host side Device (function) side

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. 327

USB HOST CONTROLLER
▪ The USB Host Controller hardware layer offers an HCI (Host Controller Interface) to the Host Controller Driver in software

 standardizes the register access and allows interoperability between the host OS and different hardware

implementations.

▪ Some HCI standards have been historically defined:

▪ OHCI (Open Host Controller Interface) defined for USB 1.1, manages the USB bus mainly in hardware (internal FIFO

descriptors management)

▪ UHCI (Universal Host Controller Interface) proprietary interface by Intel, defined for USB 1.1, manages most of the

USB bus operation in software (HCD level)

© 2020 Renesas Electronics Corporation. All rights reserved. 328

USB HOST CONTROLLER
▪ EHCI (Enhanced Host Controller Interface) defined for USB 2.0, manages high-speed communication on a USB bus.

EHCI controllers have been usually implemented in PC motherboards in conjunction with UHCI or OHCI drivers (that

managed the low and full-speed devices).

▪ xHCI (Extensible Host Controller Interface) defined for USB 3.0, manages all the USB bus speeds. It is meant to

replace the previous UHCI/OHCI/EHCI standards.

© 2020 Renesas Electronics Corporation. All rights reserved. 329

USB PACKETS
USB Transfers are performed by a sequence of transactions, which are composed
of:

▪ A Token packet, carrying addressing, direction and packet type information (IN,
OUT or SETUP). The token can be of PID type Start-Of-Frame (SOF), issued
every 1 ms (full-speed) or 125 us (high-speed) and used for synchronization.

▪ Frame interval during which a sequence of transactions is performed for the
endpoints controlled by the host..

Field PID ADDR ENDP CRC5
Bits 8 7 4 5

Desc Type of
packet

Device
address

Endpoint
address

CRC of ADDR and
ENDP

Field PID Frame number CRC5
Bits 8 11 5

Desc Type of
packet

Current frame CRC of Frame
Number

Token packet

SOF packet

© 2020 Renesas Electronics Corporation. All rights reserved. 330

USB PACKETS
▪ A Data packet, carrying the effective data being

transferred. Data packets are issued either by the

host or the device, depending on the endpoint

direction (identified by the previous Token packet).

PID indicates type DATA0 or DATA1 (toggling for

full-speed transfers) or DATA2 (high-speed

transfers).

▪ A Handshake packet, used to report the status of a

data transaction. Handshake packets are issued by

the receiver of the Data packet. PID indicates ACK,

NACK, a halt condition (STALL) or no response yet

(NYET).

Field PID DATA CRC16
Bits 8 0-8192 16

Desc Type of
packet

Data CRC of
DATA

Field PID
Bits 8

Desc Type of
packet

Data packet

Handshake packet

© 2020 Renesas Electronics Corporation. All rights reserved. 331

USB TRANSFERS
USB defines four types of data transfers:

▪ Control control commands to configure device, delivery guaranteed, low bandwidth required.

▪ Control transfers are performed in three stages:

− A Setup stage, starting with a token packet of type SETUP and a data packet containing a USB device request see

following slides.

− An optional Data stage, starting with a token packet of type IN or OUT (depending on direction) and a data packet

containing the data pertaining to the USB device request.

− A Status stage, starting with a token packet of type IN or OUT (inverse of Data direction) and containing request status

information.

© 2020 Renesas Electronics Corporation. All rights reserved. 332

USB TRANSFERS
▪ Bulk large amounts of data, non real-time, delivery guaranteed, variable use of bandwidth used for reliable data

transfers, such as mass storage data.

▪ Token packets for bulk transfers are of type IN or OUT, depending on transfer direction.

▪ Interrupt real-time, small and periodic amounts of data used for event notification (e.g. key typed on a keyboard).

▪ Token packets for interrupt transfers are of type IN or OUT, depending on transfer direction.

© 2020 Renesas Electronics Corporation. All rights reserved. 333

USB TRANSFERS
▪ Isochronous large amounts of data, delivery not guaranteed, steady rate of transmission and reception, bandwidth

depending on sampling characteristics used for streaming data, such as voice or video.

▪ Token packets for isochronous transfers are of type IN or OUT, depending on transfer direction.

▪ Isochronous transfers do not use Handshake packets.

Individual endpoints are configured to a specific type of data transfer, depending on the class driver loaded by the host during

the enumeration process see following slides.

© 2020 Renesas Electronics Corporation. All rights reserved. 334

USB TRANSFERS SCHEDULING
Rules for transfer scheduling:

▪ Periodic transfers (isochronous and interrupt) limited to 90% of the bandwidth of a frame.

▪ Control use as much as necessary of the remaining 10% (plus the remaining amount in the 90% of the bandwidth that is

not used for periodic transfers).

▪ Bulk use the bandwidth that is left.

© 2020 Renesas Electronics Corporation. All rights reserved. 335

USB ENUMERATION
The USB enumeration protocol is executed whenever a new device is inserted into the bus. This protocol comprises the

following steps:

▪ USB root hub detects when a device is connected (D- or D+ are pulled up with resistors).

▪ USB host powers and resets the device.

▪ USB host issues device requests through the Default Control Pipe (default address 0) to get the Device Descriptor see

following slides.

▪ USB host assigns a unique address to the device.

▪ USB host issues device requests through the Default Control Pipe to get the Configuration Descriptors see following

slides.

▪ USB host enables a valid configuration all corresponding interfaces and endpoints are configured, and the device may

draw the current described in the descriptor for the selected configuration.

© 2020 Renesas Electronics Corporation. All rights reserved. 336

USB ENUMERATION
Some steps of the enumeration protocol require issuing USB device requests to the device being enumerated.

The USB device requests are issued during the Setup stage of a Control transfer. A device request is 8 bytes long and

contains the following fields:

▪ bmRequestType (1 byte) request direction, type (standard, class, vendor, reserved) and recipient (device, interface,

endpoint, other).

▪ bRequest (1 byte) specific request (set address, get and set configuration, get and set descriptor, get and set interface

etc.).

▪ wValue (2 bytes), wIndex (2 bytes) value and index that depend on request.

▪ wLength (2 bytes) number of bytes to transfer if there is a data stage.

Refer to USB 2.0 Specification, Section 9.3 for more detailed information.

© 2020 Renesas Electronics Corporation. All rights reserved. 337

USB ENUMERATION
Descriptors sent by the device during enumeration process (in response to
GET_DESCRIPTOR requests):

▪ Device descriptor defines the device class, device subclass, device protocol,
max packet size for default endpoint, vendor, product, release number, indices for
manufacturer, product and serial number strings, and the number of
configurations.

Source: USB 2.0 Specification, Table 9-8

Field Size
(bytes)

Descr

bLength 1 Size of descriptor

bDescriptorType 1 DEVICE descriptor type

bcdUSB 2 USB Spec Relase Number in BCD

bDeviceClass 1 Class code

bDeviceSubClass 1 Subclass code

bDeviceProtocol 1 Protocol code

bMaxPacketSize0 1 Max packet size for endp 0

idVendor 2 Vendor ID

idProduct 2 Product ID

bcdDevice 2 Device release number in BCD

iManufacturer 1 Index of string desc for manufacturer

iProduct 1 Index of string desc for product

iSerialNumber 1 Index of string desc for serial

bNumConfigurations 1 Number of possible configurations

Device Descriptor

© 2020 Renesas Electronics Corporation. All rights reserved. 338

USB ENUMERATION
▪ Configuration descriptor defines the number of

interfaces for this configuration, the configuration value

and an index for this configuration’s string, if the device is

self-powered when running that configuration and the max

power consumption (in case it is bus powered).

▪ A GET_DESCRIPTOR request to a Configuration

Descriptor returns also the Interface and Endpoint

descriptors pertaining to the given Configuration, in

sequential order see next slides.

Source: USB 2.0 Specification, Table 9-10

Field Size
(bytes)

Descr

bLength 1 Size of descriptor

bDescriptorType 1 CONFIGURATION descriptor type

wTotalLength 2 Total length of configuration data
(includes Interface and Endpoint
descriptor sizes)

bNumInterfaces 1 Number of interfaces

bConfigurationValue 1 Configuration ID

iConfiguration 1 Index of string desc for this config

bmAttributes 1 Configuration characteristics

bMaxPower 1 Max power consumption in mA when
operating on this configuration

Configuration Descriptor

© 2020 Renesas Electronics Corporation. All rights reserved. 339

USB ENUMERATION
▪ Interface descriptor defines the interface

number, the number of endpoints, the interface
class, subclass and protocol, and an index to a
string describing this interface.

Source: USB 2.0 Specification, Table 9-12

Field Size
(bytes)

Descr

bLength 1 Size of descriptor

bDescriptorType 1 INTERFACE descriptor type

bInterfaceNumber 1 Zero-based number of this interface

bAlternateSetting 1 Value to select this alternate setting

bNumEndpoints 1 Number of endpoints used by this
interface

bInterfaceClass 1 Class code for this interface

bInterfaceSubClass 1 Subclass code for this interface

bInterfaceProtocol 1 Protocol code for this interface

iInterface 1 Index of string desc for this interface

Interface Descriptor

© 2020 Renesas Electronics Corporation. All rights reserved. 340

USB ENUMERATION
▪ Endpoint descriptor defines the

endpoint address and direction, the

endpoint type (control, isochronous, bulk or

interrupt), the max packet size and the

polling interval for periodic endpoints

(isochronous and interrupt).

▪ Refer to USB 2.0 Specification, Section 9.6

for more detailed information.

Source: USB 2.0 Specification, Table 9-13

Field Size
(bytes)

Descr

bLength 1 Size of descriptor

bDescriptorType 1 ENDPOINT descriptor type

bEndpointAddress 1 Address for this endpoint

bmAttributes 1 Endpoint attributes (type etc.)

wMaxPacketSize 2 Max packet size for this endpoint

bInterval 1 Polling interval in frames

Endpoint Descriptor

© 2020 Renesas Electronics Corporation. All rights reserved. 341

USB ENUMERATION
USB Descriptor hierarchy

Device
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Interface
Descriptor

Configuration
Descriptor

bNumEndpoints

Endpoint
Descriptor

Endpoint
Descriptor

Interface
Descriptor

bNumEndpoints

Endpoint
Descriptor

Endpoint
Descriptor

Interface
Descriptor

bNumEndpoints

Endpoint
Descriptor

Endpoint
Descriptor

Interface
Descriptor

bNumEndpoints

Configuration
Descriptor

Interface and endpoint descriptors are sequentially
retrieved, right after their corresponding configuration
descriptor, during the same GET_DESCRIPTOR request

Source: Authors

bNumInterfaces

bNumInterfaces

bNumConfigurations

© 2020 Renesas Electronics Corporation. All rights reserved. 342

10.2 – BLOCK DIAGRAM – CASE STUDY
The R7FS7G27H3A01CFC Renesas ARM Cortex-
M4 MCU implements two USB modules:

▪ USB 2.0 FS operates only on low and full
speed modes. Based on registers and a FIFO
controller to manage buffers to be received /
transmitted.

Source: Renesas Synergy MCUs User’s Manual: Hardware

© 2020 Renesas Electronics Corporation. All rights reserved. 343

10.2 – BLOCK DIAGRAM – CASE STUDY
▪ USB 2.0 HS operates in high

speed mode (480 Mbps). Uses

DMA FIFOs to maximize memory

transfer speed.

Source: Renesas Synergy MCUs User’s Manual: Hardware

© 2020 Renesas Electronics Corporation. All rights reserved. 344

10.3 – REGISTERS – CASE STUDY
Implementation for the USB 2.0 FS Module of the R7FS7G27H3A01CFC Renesas ARM Cortex-M4 MCU:

▪ SYSCFG enabling/disabling USB, pull up / pull down resistor config

▪ SYSSTS0 line status, overcurrent status (from an external overcurrent detector), status bits for entering / exiting the

“suspended” mode

▪ DVSTCTR0 connection status (reset, low-speed or full-speed), wakeup detection, enable / resume / reset control

▪ CFIFO, D0FIFO and D1FIFO read/write from/to FIFOs associated to control pipe and to other communication pipes

▪ CFIFOSEL configure control pipe and associate to CFIFO

▪ D0FIFOSEL, D1FIFOSEL associate pipes to D0FIFO and D1FIFO, configure DMA

© 2020 Renesas Electronics Corporation. All rights reserved. 345

10.3 – REGISTERS – CASE STUDY
▪ CFIFOCTR, D0FIFOCTR, D1FICOCTR received data length, status of FIFO read

▪ INTENB0, INTENB1 enable / disable USB interrupts

▪ BRDYENB enable / disable BRDY (data transfer successful) interrupt for each USB pipe

▪ NRDYENB enable / disable NRDY (data transfer not successful) interrupt for each USB pipe

▪ BEMPENB enable / disable BEMP (buffer empty or incorrect packet size) interrupt for each USB pipe

▪ SOFCFG configuration for SOF (start-of-frame) and frame timing (LS and FS)

▪ INTSTS0, INTSTS1 status of several interrupt sources (SOF, resume, BRDY, NRDY, overcurrent, disconnection etc.)

© 2020 Renesas Electronics Corporation. All rights reserved. 346

10.3 – REGISTERS – CASE STUDY
▪ BRDYSTS status of BRDY interrupt for each USB pipe

▪ NRDYSTS � status of NRDY interrupt for each USB pipe

▪ BEMPSTS status of BEMP interrupt for each USB pipe

▪ FRNUM frame number, status of CRC error and overrun/underrun in isochronous transfers

▪ DVCHGR used when device recovers from deep software standby mode due to USB events

▪ USBADDR USB device address, configuration for recovery from deep software standby mode

▪ USBREQ fields of setup requests used for control transfers.

▪ USBVAL stores the wValue field of setup transactions (received and for transmitting)

© 2020 Renesas Electronics Corporation. All rights reserved. 347

10.3 – REGISTERS – CASE STUDY
▪ USBLENG stores the wLengths field of setup transactions (received and for transmitting)

▪ DCPCFG enabling and direction of the Default Control Pipe

▪ DCPMAXP maximum packet size for the Default Control Pipe

▪ DCPCTR controls transfers for the Default Control Pipe

▪ PIPESEL select pipe to be configured by PIPECFG, PIPEMAXP etc.

▪ PIPECFG configures selected pipe (endp number, direction, transfer type etc.)

▪ PIPEMAXP configures maximum packet size for selected pipe

▪ PIPEPERI configures error detection interval for isochronous pipes

▪ PIPECTR[1..9] controls transfers for the corresponding pipe

▪ PIPETRE[1..5] � enables / disables transaction counter

© 2020 Renesas Electronics Corporation. All rights reserved. 348

10.3 – REGISTERS – CASE STUDY
▪ PIPETRN[1..5] � transaction counters for the corresponding pipes

▪ DEVADD[0..5] configures the transfer speed for the device to which the corresponding pipe is communicating

▪ PHYSLEW adjust the physical driver to host or function operation

▪ DPUSR0R configures pull-up / pull-down resistors, reads status of overcurrent and VBUS inputs

▪ DPUSR1R configures and reads status concerning deep software standby mode

▪ USBMC enables / disables battery charging mode and regulator circuit

▪ USBBCCTRL0 configures parameters for battery charging mode

© 2020 Renesas Electronics Corporation. All rights reserved. 349

10.4 – SOFTWARE STACK – CASE STUDY
▪ Example of USB Host stack for

Renesas microcontroller hardware

(part of SSP – Synergy Sofware

Package):

▪ Uses a Mass Storage Module on

top as class driver.

▪ Uses Thread X RTOS to manage

the threads concerning USB

components.

▪ (https://www.renesas.com/en-us/

software/D6001255.html)
Source: Renesas Synergy USBX Host Class Mass Storage Module Guide
r11an0173eu0100-synergy-ux-host-class-mass-storage-mod-guide

© 2020 Renesas Electronics Corporation. All rights reserved. 350

10.4 – SOFTWARE STACK – CASE STUDY
▪ The application for the shown

example uses the top-level API

provided by the USBX Host Class

Mass Storage component:

▪ This component instantiates a file

manager (FileX) when a mass

storage device (e. g. an USB

memory) is inserted.

▪ The application uses the API

provided by FileX to access the

mass storage device contents

file open, close, read, write etc.

Source: FileX Services
(https://rtos.com/wp-content/uploads/2017/10/EL-filex-programmers-guide.pdf)

Basic API
functions

https://rtos.com/wp-content/uploads/2017/10/EL-filex-programmers-guide.pdf
https://rtos.com/wp-content/uploads/2017/10/EL-filex-programmers-guide.pdf
https://rtos.com/wp-content/uploads/2017/10/EL-filex-programmers-guide.pdf
https://rtos.com/wp-content/uploads/2017/10/EL-filex-programmers-guide.pdf
https://rtos.com/wp-content/uploads/2017/10/EL-filex-programmers-guide.pdf
https://rtos.com/wp-content/uploads/2017/10/EL-filex-programmers-guide.pdf
https://rtos.com/wp-content/uploads/2017/10/EL-filex-programmers-guide.pdf
https://rtos.com/wp-content/uploads/2017/10/EL-filex-programmers-guide.pdf

© 2020 Renesas Electronics Corporation. All rights reserved.

Renesas.com

