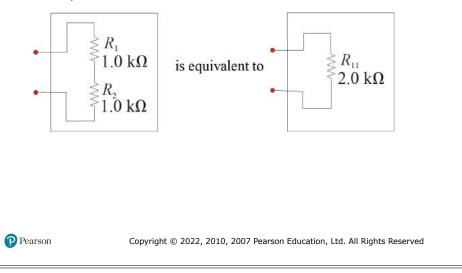

Principles of Electric Circuits: Conventional Current

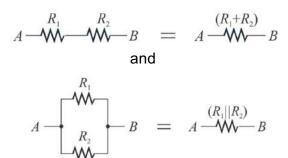
Tenth Edition, Global Edition

Chapter 7


Series-Parallel Circuits

Pearson

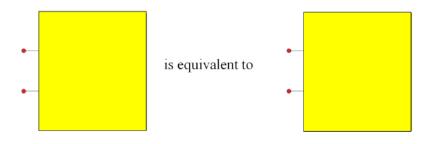
Copyright © 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved


Summary: Resistor equivalent combinations (2 of 5)

For example:

Summary: Resistor equivalent combinations (1 of 5)

Most practical circuits have combinations of series and parallel components. You can frequently simplify analysis by combining series and parallel components. Recall that:

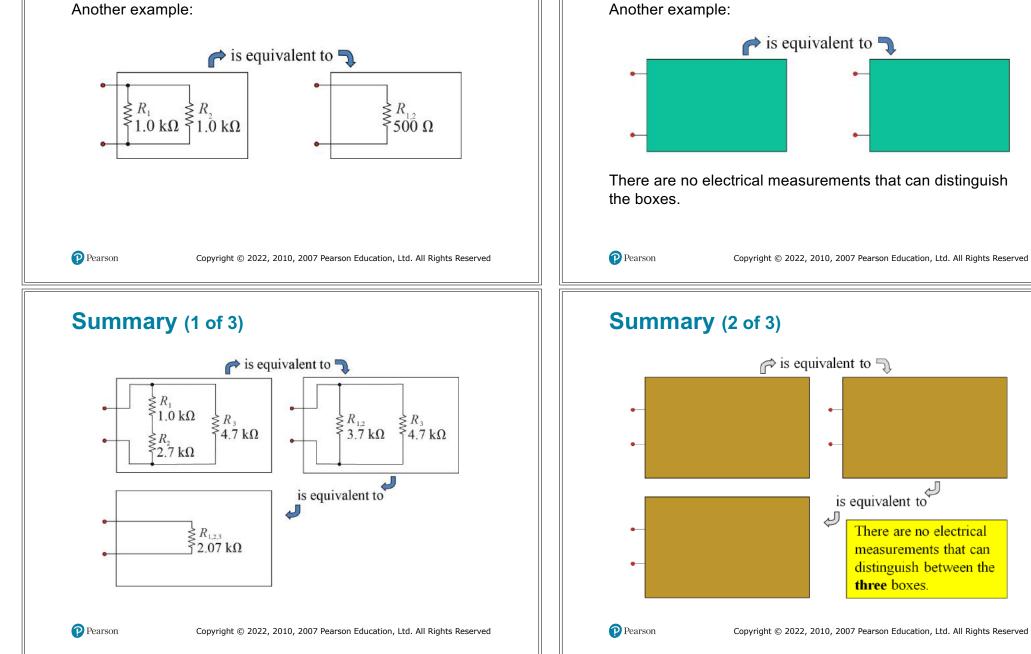

Let's look at some practical resistor combinations.... \rightarrow

Pearson 🕐

Copyright © 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved

Summary: Resistor equivalent combinations (3 of 5)

For example:



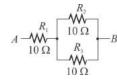
There are no electrical measurements that can distinguish the boxes.

Pearson 🕐

Summary: Resistor equivalent combinations (4 of 5)

Another example:

Summary: Resistor equivalent


combinations (5 of 5)

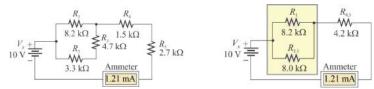
Summary: Resistor equivalent combinations (4 of 4)

Question:

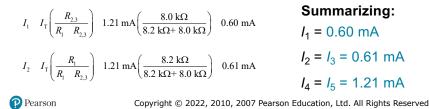
Assume you needed a 15 Ω resistor but only have 10 Ω resistors. How would you get the required 15 $\Omega?$

An equivalent 15 Ω can be made from 10 Ω resistors by connecting two 10 Ω resistors in parallel and connecting the parallel combination with one in series.

An important circuit analysis method is to form an **equivalent circuit** by combining components. This can simplify the analysis process. An equivalent circuit is one that has characteristics that are electrically the same as another circuit but is generally simpler.

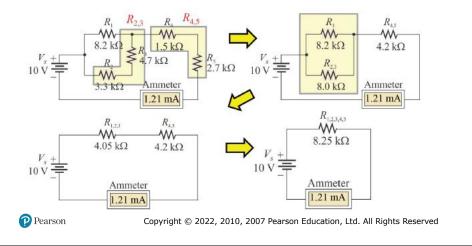

Pearson

Copyright © 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved

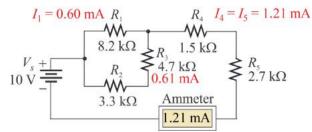

Summary: Combination circuits (2 of 3)

Question:

Can you use the equivalent circuits to find the remaining currents in the original circuit?


The total current goes through R_4 and R_5 and divides between R_1 and $R_{2,3}$. Applying the current divider rule:

Summary: Combination circuits (1 of 3)


Example:

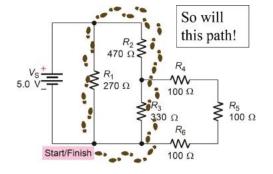
Assume you need to calculate the expected ammeter reading for the circuit. Follow the sequence:

Summary: Combination circuits (3 of 3)

It is a simple matter to find the voltage drops across the resistors now that the currents are known.

As a check on the currents, KVL can be applied to the outside loop. For this check, calculate V_1 , V_4 , and V_5 .

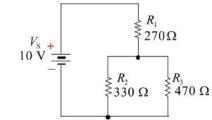
 $V_1 = 0.60 \text{ mA } (8.2 \text{ k}\Omega) = 4.91 \text{ V}$ $V_4 = 1.21 \text{ mA } (1.5 \text{ k}\Omega) = 1.82 \text{ V}$ $V_5 = 1.21 \text{ mA } (2.7 \text{ k}\Omega) = 3.27 \text{ V}$ Sum = 10.0 V


Pearson

Copyright $\textcircled{\mbox{\scriptsize C}}$ 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved

Summary: Applying KVL and KCL

Kirchhoff's voltage law and **Kirchhoff's current law** can be applied to any circuit. This is a good accuracy check or to solve for an unknown.

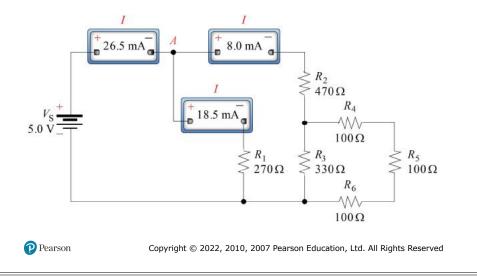

For example, applying KVL, the path shown will have a sum of 0 V.

Pearson

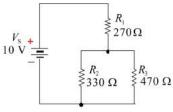
Copyright © 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved

Summary: Combination circuits

Tabulating current, resistance, voltage and power is a useful way to summarize parameters. Solve for the unknown quantities in the circuit shown.


<i>I</i> ₁ = 2	1.6 mA	<i>R</i> ₁ = 270 Ω	V ₁ = 5.82 V	<i>P</i> ₁ = 126 mW
<i>I</i> ₂ = 1	2.7 mA	R ₂ = 330 Ω	V ₂ = 4.18 V	<i>P</i> ₂ = 53.1 mW
<i>I</i> ₃ =	8.9 mA	<i>R</i> ₃ = 470 Ω	V ₃ = 4.18 V	<i>P</i> ₃ = 37.2 mW
/ _T = 2	1.6 mA	<i>R</i> _T = 464 Ω	V _S = 10 V	P _T = 216 mW

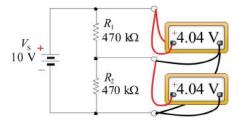
Pearson


Copyright @ 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved

Summary (3 of 3)

Kirchhoff's current law can also be applied to the same circuit. What are the readings for node *A*?

Summary: Kirchhoff's laws can be applied as a check on the answer


Notice that the current in R_1 is equal to the sum of the branch currents in R_2 and R_3 .

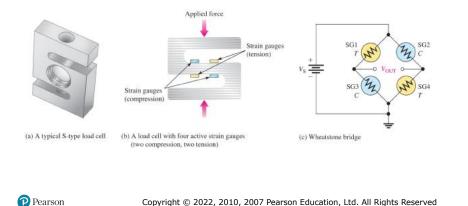
The sum of the voltages around the outside loop is zero.

<i>I</i> ₁ = 21.6 mA	R ₁ = 270 Ω	V ₁ = 5.82 V	<i>P</i> ₁ = 125 mW
<i>I</i> ₂ = 12.7 mA	<i>R</i> ₂ = 330 Ω	V ₂ = 4.18 V	<i>P</i> ₂ = 52.9 mW
<i>I</i> ₃ = 8.9 mA	<i>R</i> ₃ = 470 Ω	<i>V</i> ₃ = 4.18 V	<i>P</i> ₃ = 37.2 mW
<i>I</i> _T = 21.6 mA	<i>R</i> _T = 464 Ω	V _S = 10 V	<i>P</i> _T = 216 mW

Summary: Loading effect of a voltmeter

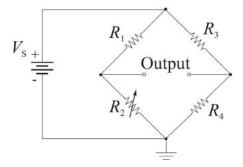
Assume $V_S = 10$ V, but the meter reads only 4.04 V when it is across either R_1 or R_2 .

Can you explain what is happening?


All measurements affect the quantity being measured. A voltmeter has internal resistance, which can change the resistance of the circuit under test. In this case, a 1.0 M Ω internal resistance of the meter accounts for the readings.

Pearson

Copyright © 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved


Summary: Application of the Wheatstone bridge

Wheatstone bridges are used in load cells, which are widely used in scales. The bridge arms are constructed from four strain gauges - two are in tension and two in compression.

Summary: Wheatstone bridge

The Wheatstone bridge consists of four resistive arms forming two voltage dividers and a dc voltage source. The output is taken between the dividers. Frequently, one of the bridge resistors is adjustable.

When the bridge is balanced, the output voltage is zero, and the products of resistances in the opposite diagonal arms are equal.

Pearson

Copyright © 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved

Key Terms (1 of 2)

- **Balanced** A bridge circuit that is in the balanced state as **bridge** indicated by 0 V across the output.
 - **Bleeder** The current left after the load current is **current** subtracted from the total current into the circuit.
 - Load An element (resistor or other component) connected across the output terminals of a circuit that draws current from the circuit.

Key Terms (2 of 2)

Unbalanced A bridge circuit that is in the unbalanced state **bridge** as indicated by a voltage across the output that is proportional to the amount of deviation from the balanced state.

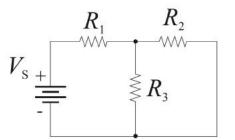
Wheatstone A 4-legged type of bridge circuit with which an bridge unknown resistance can be accurately measured using the balanced state.
Deviations in resistance can be measured using the unbalanced state.

Quiz (1 of 11)

- 1. Two circuits that are equivalent have the same
 - a. number of components
 - b. response to an electrical stimulus
 - c. internal power dissipation
 - d. all of the above

Pearson

Copyright © 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved

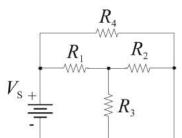

Quiz (2 of 11)

- 2. If a series equivalent circuit is drawn for a complex circuit, the equivalent circuit can be analyzed with
 - a. the voltage divider theorem
 - b. Kirchhoff's voltage law
 - c. both of the above
 - d. none of the above

Quiz (3 of 11)

Pearson

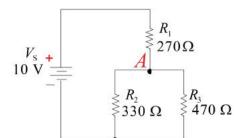
- 3. For the circuit shown,
 - a. R_1 is in series with R_2
 - b. R_1 is in parallel with R_2
 - c. R_2 is in series with R_3
 - d. R_2 is in parallel with R_3



Copyright \circledast 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved

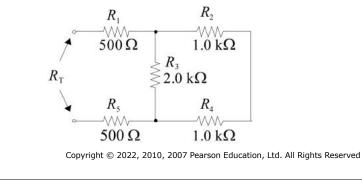
Quiz (4 of 11)

- 4. For the circuit shown,
 - a. R_1 is in series with R_2
 - b. R_4 is in parallel with R_1
 - c. R_2 is in parallel with R_3
 - d. none of the above



Pearson

Copyright © 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved


Quiz (6 of 11)

- 6. For the circuit shown, Kirchhoff's voltage law
 - a. applies only to the outside loop
 - b. applies only to the A junction.
 - c. can be applied to any closed path.
 - d. does not apply.

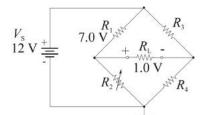
Quiz (5 of 11)

- 5. The total resistance, R_{T} , of the group of resistors is
 - <mark>a</mark>. 1.0 kΩ
 - <mark>b</mark>. 2.0 kΩ
 - <mark>c</mark>. 3.0 kΩ
 - d. 4.0 kΩ

Quiz (7 of 11)

Pearson

- 7. The effect of changing a measured quantity due to connecting an instrument to a circuit is called
 - a. loading
 - b. clipping
 - c. distortion

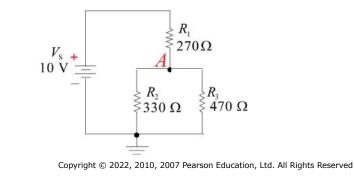

Pearson

d. loss of precision

Pearson

Quiz (8 of 11)

- 8. An unbalanced Wheatstone bridge has the voltages shown. The voltage across R_4 is
 - a. 4.0 V
 - b. 5.0 V
 - **c**. 6.0 V
 - d. 7.0 V


Pearson

Copyright © 2022, 2010, 2007 Pearson Education, Ltd. All Rights Reserved

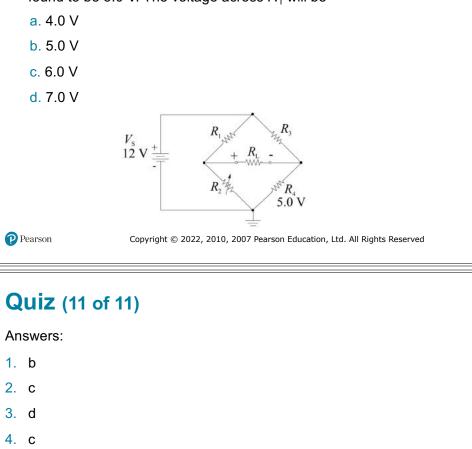
Quiz (10 of 11)

- 10. For the circuit shown, if R_3 opens, the voltage at point *A* will
 - a. decrease
 - b. stay the same.
 - c. increase.

Pearson

Quiz (9 of 11)

5. b


6. C

7. a

8. a 9. d 10. c

🕐 Pearson

9. Assume R_2 is adjusted until the Wheatstone bridge is balanced. At this point, the voltage across R_4 is measured and found to be 5.0 V. The voltage across R_1 will be

Copyright

provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

This work is protected by United States copyright laws and is

Pearson