EEE 225 - Engineering Mathematics I (Differential Equations) Homework 10

$19^{\text {th }}$ Dec, 2022

1. Figure 1 shows the circuit prior to a switch being thrown at time $t=0$. We assume that at $t=0$ the circuit has been in the configuration shown in Figure 1 long enough for the circuit to reach steady state. In the steady state the voltage over the capacitor v_{1} equals the constant input voltage v_{s}.

Figure 1: Electric circuit prior to switch being thrown.

Figure 2: Electric circuit after switch.

Figure 2 pictures the circuit after $t=0$ and shows the important circuit variables. All the resistors have the same value R and all the capacitors the same value C. We want to determine the behaviour of the circuit after $t=0$.

Solve

$$
\begin{equation*}
\frac{d \underline{x}}{d t}=\underline{A} \underline{x} \tag{1}
\end{equation*}
$$

where

$$
\underline{x}(0)=\left(\begin{array}{c}
v_{s} \tag{2}\\
0 \\
0
\end{array}\right)
$$

and

$$
\underline{A}=\frac{-1}{4 R C}\left(\begin{array}{lll}
2 & 1 & 1 \tag{3}\\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

