
© 2020 Renesas Electronics Corporation. All rights reserved.

EMBEDDED SYSTEMS
BASED ON CORTEX-M4 AND THE RENESAS
SYNERGY PLATFORM

2020
PROF. DOUGLAS RENAUX, PHD
PROF. ROBSON LINHARES, DR.
UTFPR / ESYSTECH

RENESAS ELECTRONICS CORPORATION

© 2020 Renesas Electronics Corporation. All rights reserved. 112

3.3 – CORTEX-M4 ISA – REGISTERS
Floating Point Registers:

▪ The Cortex-M4 with optional floating-point extension, implements 32 32-bit floating point registers named S0 to S31.

▪ These can be combined two by two forming 16 double precision (64-bit) floating point registers named D0 to D15. D0 is

formed by S1:S0 (the concatenation of the registers S1 and S0 where S1 is the most significant word, i.e. the leftmost

word).

© 2020 Renesas Electronics Corporation. All rights reserved. 113

3.4 – INSTRUCTION SET
Before presenting the instruction set, lets examine:

▪ Assembly syntax

▪ 3-operand instructions

▪ Conditional instructions

▪ Instructions that affect the flags

© 2020 Renesas Electronics Corporation. All rights reserved. 114

3.4 – INSTRUCTION SET
The most common instruction formats are:

label: MNEMONIC Destination, Operand1, Operand2 ;comment

label: MNEMONIC Destination, Operand2 ;comment

Examples:

fmt1: ADD R2, R4, R5 ;R2 = R4 + R5

fmt2: ADD R2, R4 ;R2 = R2 + R4

© 2020 Renesas Electronics Corporation. All rights reserved. 115

3.4 – INSTRUCTION SET
Suggested assembly source file layout:

fmt1: ADD R2, R4, R5 ;R2 = R4 + R5

By setting the TABs to 4 spaces, these positions can be easily obtainable.

Only labels should begin on column 1.

Only mnemonics are compulsory. Labels, operands and comments are optional, although they are all very frequent.

col 1 col 5 col 13 col 21

© 2020 Renesas Electronics Corporation. All rights reserved. 116

For an instruction with two operands,
the first operand (Op1) is always a
register. The second operand (Op2)
may be a register, or a register that had
its contents shifted or rotated, or an
immediate value coded in the
instruction.

Register File

ALU

Barrel Shifter

MUX

LSL
LSR
ASR
RR
RRX

Op2 Select

Imm field

Instruction Register

Op1 Op2

A B

R

Rn Rm

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. 117

3.4 – INSTRUCTION SET
Examples of Operand 2

 ADD R2, R4, R5 ;Operand 2 is a register (R5)

 ADD R2, R4, R5,LSL #2 ;Operand 2 is a shifted register
 ;R5 is shifted left by 2 bits
 ;this corresponds to multiplying its value by 4

 ADD R2, R4, #0xFF ;Operand 2 is an immediate value
 ;the hexadecimal value 0xFF

© 2020 Renesas Electronics Corporation. All rights reserved. 118

3.4 – INSTRUCTION SET
In the Cortex-M4 instruction set, the programmer explicitly controls if the result of an instruction should affect the flags:

N,Z,C,V.

Most instructions have a variant with the letter S appended to the mnemonic. The S variant means: “set the flags”.

 ADD R2, R4, R5 ;the result of this addition does
 ;not affect the flags.

 ADDS R2, R4, R5 ;the result of this addition
 ;affects the N,Z,C and V flags.

© 2020 Renesas Electronics Corporation. All rights reserved. 119

3.4 – INSTRUCTION SET
Many Cortex-M4 instruction can be conditional, meaning that the instruction only executes if the flags are in a given state.

Except for branch instructions, an instruction must be in an IT block to be conditional. The condition is specified by two letters

appended after the mnemonic (see condition table on next slide).

 ADD R2,R4,R5 ;the result of this addition does
 ;not affect the flags.
 ADDS R2,R4,R5 ;the result of this addition
 ;affects the N,Z,C and V flags.
 ITT EQ ;start of an IT block with 2 instructions
 ADDEQ R2,R4,R5 ;if Z is set, execute the ADD
 ADDSEQ R2,R4,R5 ;if Z is set, execute the ADD and change
 ;flags according to result of this instruction

© 2020 Renesas Electronics Corporation. All rights reserved. 120

3.4 – INSTRUCTION SET
Condition codes
mnemonics suffixes

Suffix Flags Meaning
EQ Z = 1 Equal
NE Z = 0 Not equal

CS or HS C = 1 Higher or same, unsigned
CC or LO C = 0 Lower, unsigned

MI N = 1 Negative
PL N = 0 Positive or zero
VS V = 1 Overflow
VC V = 0 No overflow
HI C = 1 and Z = 0 Higher, unsigned
LS C = 0 or Z = 1 Lower or same, unsigned
GE N = V Greater than or equal, signed
LT N != V Less than, signed
GT Z = 0 and N = V Greater than, signed
LE Z = 1 and N != V Less than or equal, signed
AL Can have any value Always. This is the default when no suffix is specified.

© 2020 Renesas Electronics Corporation. All rights reserved. 121

3.4 – INSTRUCTION SET
Code examples for conditional instructions.

 cmp R12,R10 ;compare the unsigned values in R12 and R10, change flags
 beq op1 ;branch to op1 if the values of R12 and R10 are equal
 ite hi ;two-instruction IT block with HI condition
 addhi R12,R12,#1 ;if R12 > R10 then increment R12
 addls R10,R10,#1 ;else increment R10
op1:
 ...

© 2020 Renesas Electronics Corporation. All rights reserved. 122

3.4 – INSTRUCTION SET
An immediate value is a constant whose value is encoded in the instruction. Hence, a limited range of values is

allowed.

The notation for immediate values is #value.

The notation for negative values is #-15.

The notation for hexadecimal values is #0xFA0.

Example:

 ADD R2,R4,#5 ;R2 = R4 + 5

© 2020 Renesas Electronics Corporation. All rights reserved. 123

3.4 – INSTRUCTION SET
▪ Cortex-M4 instruction codes are either 16-bit or 32-bit.

▪ 16-bit instructions are called narrow and may have a .N suffix.

▪ 32-bit instructions are called wide and may have a .W suffix.

▪ Some mnemonics may be coded either in narrow or wide format, for example:

 0x37a: 0x1840 ADDS.N R0, R0, R1 //16-bit code

 0x37c: 0xeb10 0x0001 ADDS.W R0, R0, R1 //32-bit code

▪ 16-bit and 32-bit instruction code can be freely intermixed in a program.

▪ All instructions must be halfword aligned, i.e. must be stored on an even address.

© 2020 Renesas Electronics Corporation. All rights reserved. 124

3.4 – INSTRUCTION SET
▪ Hence, PC will never hold an odd address => bit 0 of PC is always 0.
▪ When writing a 32-bit value to PC, bit 0 is ignored => can be used for other purpose.
▪ In other ARM processors, use bit 0 for interworking (i.e. change of instruction set).
▪ On Cortex-M, bit 0 must be a 1. This value is stored to the T flag in XPSR.
▪ Instructions that can be used for interworking (i.e. write to T flag):
▪ BX
▪ BLX
▪ pop {PC}

▪ Instructions that have as destination register the PC, cause a branch
▪ MOV PC, LR
▪ ADD PC, PC,R1

▪ There are restrictions on which instructions may write to PC.

© 2020 Renesas Electronics Corporation. All rights reserved. 125

3.4 – INSTRUCTION SET
Arithmetic instructions

Instruction Description Action

ADD Rd, Rn, Op2 Add a register to Operand2 Rd = Rn + Op2

ADC Rd, Rn, Op2 Add a register to Operand2 and to Carry Rd = Rn + Op2 + CY

SUB Rd, Rn, Op2 Subtract from a register the Operand2 Rd = Rn - Op2

SBC Rd, Rn, Op2
Subtract from a register the Operand2 and the Borrow (negation of
Carry) Rd = Rn - Op2 - /CY

RSB Rd, Rn, Op2 Subtract from Operand2 a register Rd = Op2 - Rn

RSC Rd, Rn, Op2 Subtract from Operand2 a register and the Borrow Rd = Op2 - Rn - /CY

MOV Rd, Op2 Move to Rd from Operand2 (put a copy of Operand2 into Rd) Rd = Op2

MVN Rd, Op2 Move to Rd /Operand2 Rd = /Op2

MOVT Rd,<imm16> Move to Rd[31:16] from imm16. Lower bits of Rd are unaffected
Rd[31:16] = imm16
Rd[15:0] unchanged

© 2020 Renesas Electronics Corporation. All rights reserved. 126

3.4 – INSTRUCTION SET
Compare and Test

Instruction Description

CMP Rn, Op2 Compare: Subtract from Rn the Operand2, discard result, change flags

CMN Rn, Op2 Compare negative: Add Rn to Operand2, discard result, change flags

TST Rn, Op2 Test: Rn AND Operand2, discard result, change flags

TEQ Rn, Op2 Test equivalence: Rn EOR Operand2, discard result, change flags

© 2020 Renesas Electronics Corporation. All rights reserved. 127

3.4 – INSTRUCTION SET
Logical

Instruction Description Action

AND Rd, Rn, Op2 AND: bitwise logical AND a register to Operand2 Rd = Rn AND Op2

ORR Rd, Rn, Op2 OR: bitwise logical OR a register to Operand2 Rd = Rn OR Op2

EOR Rd, Rn, Op2 Exclusive OR: bitwise logical XOR a register to Operand2 Rd = Rn XOR Op2

ORN Rd, Rn, Op2 OR NOT: bitwise logical OR a register to NOT(Operand2) Rd = Rn OR /Op2

© 2020 Renesas Electronics Corporation. All rights reserved. 128

3.4 – INSTRUCTION SET
Shift Instructions

Instruction Description #imm Sh range

ASR Rd, Rn, Sh Arithmetic Shift Right (preserves signal) 1..32

LSL Rd, Rn, Sh Logical Shift Left 0..31

LSR Rd, Rn, Sh Logical Shift Right 1..32

ROR Rd, Rn, Sh Rotate Right 0..31

RRX Rd, Rn Rotate Right Extended

Remark: Sh is either the lower 8 bits of a register (value from 0..255)

a 5-bit immediate value representing either 1..32 or 0..31

© 2020 Renesas Electronics Corporation. All rights reserved. 129

3.4 – INSTRUCTION SET

source: ARM
The ARM Architecture

© 2020 Renesas Electronics Corporation. All rights reserved. 130

3.4 – INSTRUCTION SET
Shift Operators to be used in Operand2

Operator Description #imm Sh range

ASR Sh Arithmetic Shift Right (preserves signal) 1..32

LSL Sh Logical Shift Left 0..31

LSR Sh Logical Shift Right 1..32

ROR Sh Rotate Right 0..31

RRX Rotate Right Extended

Remark: Sh is either the lower 8 bits of a register (value from 0..255)

a 5-bit immediate value representing either 1..32 or 0..31

Usage: R4, LSL #3 (Operand2 is R4 << 3)

© 2020 Renesas Electronics Corporation. All rights reserved. 131

3.4 – INSTRUCTION SET
Multiply

Instruction Description Action
Instructions that multiply 32-bit by 32-bit resulting 32-bit with wrapping (LSW is preserved and higher bits are
discarded)
MUL Rd, Rm, Rs Multiply Rd = Rm * Rs

MLA Rd, Rm, Rs, Rn Multiply and accumulate Rd = Rm * Rs + Rn

MLS Rd, Rm, Rs, Rn Multiply and subtract Rd = Rm * Rs - Rn

Long multiplication: multiply 32-bit by 32-bit resulting 64-bit

UMULL RdLo, RdHi, Rm, Rs Unsigned long multiply RdHi:RdLo = unsigned(Rm*Rs)

UMLAL RdLo, RdHi, Rm, Rs Unsigned long multiply and accumulate RdHi:RdLo = unsigned(RdHi:RdLo + Rm*Rs)

UMAAL RdLo, RdHi, Rm, Rs Unsigned long multiply and accumulate double
RdHi:RdLo = unsigned(RdHi+RdLo +
Rm*Rs)

SMULL RdLo, RdHi, Rm, Rs Signed long multiply RdHi:RdLo = signed(Rm*Rs)

SMLAL RdLo, RdHi, Rm, Rs Signed long multiply and accumulate RdHi:RdLo = signed(RdHi:RdLo + Rm*Rs)

© 2020 Renesas Electronics Corporation. All rights reserved. 132

3.4 – INSTRUCTION SET
Divide

Instruction Description Action

UDIV Rd, Rn, Rm Unsigned divide Rd = Rn / Rm

SDIV Rd, Rn, Rm Signed divide Rd = Rn / Rm

© 2020 Renesas Electronics Corporation. All rights reserved. 133

3.4 – INSTRUCTION SET
Bit field operations

A bit field is a sequence of bits in a register.

A bit field is characterized by two values:

▪ Width: the number of bits in the bit field (1..32);

▪ lsb: the position of the least significant bit in the bitfield (0..31).

Instruction Description Action

BFC Rd,#<lsb>,#<width> Bit field clear
clear Rd[(width+lsb-1)..lsb], others
unchanged

BFI Rd, Rn,#<lsb>,#<width>
Bit field insert. Copy the <width> LSb of Rn to
Rd Rd[(width+lsb-1)..lsb] = Rn[(width-1)..0]

SBFX Rd,
Rn,#<lsb>,#<width> Signed bit field extract.

Copy bitfield from Rn to LSb of Rd and sign
extend.

UBFX Rd,
Rn,#<lsb>,#<width> Unsigned bit field extract.

Copy bitfield from Rn to LSb of Rd and zero
extend.

© 2020 Renesas Electronics Corporation. All rights reserved. 134

3.4 – INSTRUCTION SET
Memory access instructions

Instruction type Description
LDRB Load byte. Read a byte from memory and store in the LSB of a register.

LDRH
Load half word. Read a half-word from memory and store in the lower half-word of a
register.

LDR Load register. Read a word from memory and store in a register.
LDRD Load double. Read a double word form memory and store in two registers.
STRB Store byte. Store the LSB of a register into memory.
STRH Store half-word. Store the lower half of a register into memory.
STR Store register. Store a register into memory.
STRD Store double. Store the two registers into memory.
LDM Load multiple. Read several (up to 16) registers from memory.
STM Store multiple. Store several (up to 16) registers into memory.

© 2020 Renesas Electronics Corporation. All rights reserved. 135

3.4 – INSTRUCTION SET
Memory access instructions – addressing

For the purposes of addressing, memory is just a very large vector of bytes. For Cortex-M, it

is a vector with 4G entries.

The four data types that can be accesses with LDR/STR instructions are shown here. In a

little-endian memory system, when a data type occupies more than 1 byte in memory, its

address is the address of the LSB (Least Significant Byte).

shown: byte at 0x0, half-word at 0x2, word at 0x4, and double-word at 0x8

0x0000 0000

0x0000 0001

0x0000 0002

0x0000 0003

0x0000 0004

0x0000 0005

0x0000 0006

0x0000 0007

0x0000 0008

0x0000 000F

0x0000 0010

0xFFFF FFFF

...

byte

half-word

word

double
word

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. 136

3.4 – INSTRUCTION SET

source: DDI0403E.B ARMv7-M Architecture Reference Manual

© 2020 Renesas Electronics Corporation. All rights reserved. 137

3.4 – INSTRUCTION SET

source: DDI0403E.B ARMv7-M Architecture Reference Manual

© 2020 Renesas Electronics Corporation. All rights reserved. 138

3.4 – INSTRUCTION SET
Memory access instructions – addressing modes

Indexing
Mode

Example Action Change in base
register

Pre-index with
writeback (!) LDR R0,[R1,#4] !

R0 = [R1 + 4] (R0 gets the contents of
memory location at address R1+4) R1 = R1 + 4

LDR R0,[R1,R2] ! R0 = [R1+R2] R1 = R1 + R2

LDR R0,[R1,R2,LSL #2] ! R0 = [R1 + (R2 << 2)] R1 = R1 + R2 << 2

Pre-index LDR R0,[R1,#4] R0 = [R1 + 4] no change

LDR R0,[R1,R2] R0 = [R1+R2] no change

LDR R0,[R1,R2,LSL #2] R0 = [R1 + (R2 << 2)] no change

Pre-index LDR R0,[R1],#4 R0 = [R1] R1 = R1 + 4

LDR R0,[R1],R2 R0 = [R1] R1 = R1 + R2

LDR R0,[R1],R2,LSL #2 R0 = [R1] R1 = R1 + R2 << 2

© 2020 Renesas Electronics Corporation. All rights reserved. 139

3.4 – INSTRUCTION SET
Execution flow control instructions

Instruction Usage Branch Range

B.N <label> 16-bit Branch to target address. -256 to 254 bytes

B.W <label> 32-bit Branch to target address. +/–1 MB
CBNZ <label>
CBZ <label>

Compare and Branch on Nonzero.
Compare and Branch on Zero. 0-126 B

BL <label> Call a subroutine. +/–16 MB

BLX <register> Call a subroutine, optionally change instruction set. Any

BX <register> Branch to target address, optionally change instruction set. Any

TBB TBB: Table Branch, byte offsets. 0-510 B

TBH TBH: Table Branch, halfword offsets. 0-131070 B

© 2020 Renesas Electronics Corporation. All rights reserved. 140

3.4 – INSTRUCTION SET
Miscellaneous instructions

Instruction Usage

CPSID Change Processor State, Disable Interrupts.

CPSIE Change Processor State, Enable Interrupts.

DMB Data Memory Barrier.

DSB Data Synchronization Barrier.

ISB Instruction Synchronization Barrier.

MRS Move to Register from Special Register.

MSR Move to Special Register from Register.

NOP No Operation.

SVC Supervisor Call.

WFI Wait for Interrupt.

© 2020 Renesas Electronics Corporation. All rights reserved. 141

3.5 – EXCEPTIONS
The normal flow of execution of a program is to execute the next instruction in memory, unless a Branch, Subroutine Call or

Return is executed. Hence, a human processor could execute the same program in the same order.

An exception if a break in this normal flow of execution. Such a break can be caused by:

▪ Hardware interrupt,

▪ Fault (e.g. memory access error, divide by 0, invalid instruction code),

▪ Software generate exception.

© 2020 Renesas Electronics Corporation. All rights reserved. 142

3.5 – EXCEPTIONS
Exceptions occur asynchronously, this is, at any point of the execution. They may occur many time and on successive

executions of the program they usually occur at different places of this program.

When an exception occurs it must be serviced. Meaning that a software routine must either respond to the interrupt request

or take steps to resolve or mitigate the fault.

This routine is called: exception handler routine, interrupt service routine, or interrupt handler.

© 2020 Renesas Electronics Corporation. All rights reserved. 143

3.5 – EXCEPTIONS – INTERRUPTS
Hardware Interrupts are one of the kind of exceptions.

Interrupts are an efficient way for a peripheral to inform the processor that it requires servicing. If interrupts were not

available, the processor would have to periodically poll the peripherals (thus termed polling) to check if service is required.

Polling is an inefficient technique.

© 2020 Renesas Electronics Corporation. All rights reserved. 144

3.5 – EXCEPTIONS – INTERRUPTS
Basic concepts of interrupts:

1. Peripheral sends an
Interrupt Request (IRQ) to
an Interrupt Controller

2. Interrupt Controller selects the
highest priority non-masked
interrupt request and informs
the core.

3. If the priority of the IRQ is sufficiently
high, when the instruction currently in
execution finishes then the
IRQ is serviced.

source: ARM
ARM Cortex-M for Beginners - Yiu

© 2020 Renesas Electronics Corporation. All rights reserved. 145

3.5 – EXCEPTIONS – INTERRUPTS – DETAILED PROCESS
1- An external device, such as a peripheral, requests an interrupt (IRQ) by signaling to the interrupt controller.

The input lines of the interrupt controller (240 in the NVIC of a Cortex-M4) can be either level sensitive of edge sensitive.

© 2020 Renesas Electronics Corporation. All rights reserved. 146

3.5 – EXCEPTIONS – INTERRUPTS – DETAILED PROCESS
2- Upon receiving an IRQi (hardware signal on input i of the interrupt controller - IC) then the IC performs two checks:

a) if input i is masked or not;

b) if there is another request (IRQj on input j) already being sent to the processor.

If IRQi is not masked and if its priority is higher than IRQj’s priority (or no request is currently being sent to the processor)

then IRQi is forwarded to the processor.

© 2020 Renesas Electronics Corporation. All rights reserved. 147

3.5 – EXCEPTIONS – INTERRUPTS – DETAILED PROCESS
3- The processor, upon receiving an IRQ verifies if its priority is sufficiently high:

a) PRIMASK and FAULTMASK,
when set, impose a priority
level of 0 or -1 respectively.
Hence, when FAULTMASK
is set, all exceptions from
3 on are masked.

b) If an exception is active
(being serviced) then only a
higher priority exception may
preempt its handler.

If both these conditions are met,
servicing starts at the end of the
current instruction.

source: ARM
Cortex™-M4 Devices Generic User Guide

© 2020 Renesas Electronics Corporation. All rights reserved. 148

3.5 – EXCEPTIONS – INTERRUPTS – DETAILED PROCESS
4- Eight registers are pushed onto the Stack

The Interrupt changes state to

Active.

Since R0-R3 and R12 are stacked,

any C procedure following ATPCS

can be registered as a handler.

source: ARM
Cortex™-M4 Devices Generic User Guide

© 2020 Renesas Electronics Corporation. All rights reserved. 149

3.5 – EXCEPTIONS – INTERRUPTS – DETAILED PROCESS
5- Register LR is loaded with one of the EXC_RETURN

values, depending on the current state of the processor.

Note that EXC_RETURN

represents memory addresses

in a region where code is not

allowed.

source: ARM
Cortex™-M4 Devices Generic User Guide

© 2020 Renesas Electronics Corporation. All rights reserved. 150

3.5 – EXCEPTIONS – INTERRUPTS – DETAILED PROCESS

6- The processor reads from the vector table

the initial address of the handler for the

Interrupt. This value is loaded to PC and the

execution of the handler starts.

Important: since the handler is Thumb-2 code

the addresses in the vector table must have

its LSb set to 1.

source: ARM
Cortex™-M4 Devices Generic User Guide

© 2020 Renesas Electronics Corporation. All rights reserved. 151

3.5 – EXCEPTIONS – SERVICING
Exception Servicing

The handler must service the interrupt request, in this process at least three actions must be taken:

1. The interrupt request signal must be deactivated, otherwise the processor would continuously be servicing this interrupt.

2. Any volatile data (such as a byte that arrived on the UART and is available in the Receiving Register) must be saved.

3. Apart from the registers saved in Step 4 of the entry process, any other register must be saved by the handler before

modifying it and these registers must be restored before returning to the interrupted code.

© 2020 Renesas Electronics Corporation. All rights reserved. 152

3.5 – EXCEPTIONS – RETURN
Exception Return

The instruction that causes the return from the handler to the interrupted code is either:
BX LR or
POP {...,PC} // if this instruction is used the the entry of the handler must be PUSH {...,LR}

© 2020 Renesas Electronics Corporation. All rights reserved. 153

3.5 – EXCEPTIONS – RETURN
Exception Return

What happens when a value such as 0xFFFF FFF1 is loaded to the PC?

Being an invalid code address, the processor detects that this is an EXC_RETURN code and proceeds with the actions

described in the table in the slide Step 5 of the Interrupt Entry.

© 2020 Renesas Electronics Corporation. All rights reserved. 154

3.5 – EXCEPTION HANDLING
Tail Chaining: optimization that avoids registers pop followed by registers push when one exception is handled right after

another.

source: ARM
An Introduction to the ARM Cortex-M3 Processor - Shyam Sadasivan

© 2020 Renesas Electronics Corporation. All rights reserved. 155

3.5 – EXCEPTION HANDLING
Late arrival: optimization where a higher priority interrupt is serviced first even if it arrives while a prior lower priority interrupt

is already in the stage of pushing registers.

source: ARM
An Introduction to the ARM Cortex-M3 Processor - Shyam Sadasivan

© 2020 Renesas Electronics Corporation. All rights reserved.

Renesas.com

